ojs2 has produced an error Message: WARNING: include(/home/stmikbud/public_html/ejurnal/cache/fc-pluginSettings-3-flagcounter.php): failed to open stream: Permission denied In file: /home/stmikbud/public_html/ejurnal/lib/pkp/classes/cache/FileCache.inc.php At line: 44 Stacktrace: Server info: OS: Linux PHP Version: 5.6.40 Apache Version: N/A DB Driver: mysql DB server version: 10.6.22-MariaDB
ojs2 has produced an error Message: WARNING: include(): Failed opening '/home/stmikbud/public_html/ejurnal/cache/fc-pluginSettings-3-flagcounter.php' for inclusion (include_path='.:/home/stmikbud/public_html/ejurnal/classes:/home/stmikbud/public_html/ejurnal/pages:/home/stmikbud/public_html/ejurnal/lib/pkp:/home/stmikbud/public_html/ejurnal/lib/pkp/classes:/home/stmikbud/public_html/ejurnal/lib/pkp/pages:/home/stmikbud/public_html/ejurnal/lib/pkp/lib/adodb:/home/stmikbud/public_html/ejurnal/lib/pkp/lib/phputf8:/home/stmikbud/public_html/ejurnal/lib/pkp/lib/pqp/classes:/home/stmikbud/public_html/ejurnal/lib/pkp/lib/smarty:.:/opt/alt/php56/usr/share/pear:/opt/alt/php56/usr/share/php') In file: /home/stmikbud/public_html/ejurnal/lib/pkp/classes/cache/FileCache.inc.php At line: 44 Stacktrace: Server info: OS: Linux PHP Version: 5.6.40 Apache Version: N/A DB Driver: mysql DB server version: 10.6.22-MariaDB
Komparasi Metode LSTM dan GRU dalam Memprediksi Harga Saham | Meri Aryati | JURNAL MEDIA INFORMATIKA BUDIDARMA

Komparasi Metode LSTM dan GRU dalam Memprediksi Harga Saham

Ni Wayan Meri Aryati, I Komang Arya Ganda Wiguna, Ni Wayan Suardiati Putri, I Komang Kurniawan Widiartha, Ni Luh Wiwik Sri Rahayu Ginantra

Abstract


The rapid development of technology has an impact on the economy of society, one of which is investing in stocks. Stocks are evidence of ownership of an individual's assets in a company. However, stock prices have very high levels of fluctuation, requiring accurate methods to assist in predicting stock prices. LSTM and GRU were chosen for their intrinsic ability to handle long-term and short-term problems in time series data. LSTM has a complex memory structure that allows decision-making based on long and short-term information. Meanwhile, GRU has a simpler structure with a focus on gate mechanisms to control information flow, resulting in lighter and faster models. Therefore, this study will compare two RNN methods, Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU), in predicting stock prices using MAPE and RMSE evaluation metrics. The combination of parameters used to evaluate the MAPE and RMSE values in this study includes learning rate, timestamps, batch size, and epoch. The results of this study show that the GRU method is more accurate compared to the LSTM method. This is evidenced by the evaluation results of the LSTM method with the lowest MAPE value of 2.42% and the lowest RMSE value of 0.01807, while the evaluation results of the GRU method with the lowest MAPE value of 2.14% and the lowest RMSE value of 0.01775. The combination of parameters used in this study also has an influence on the final MAPE and RMSE results, especially in the use of learning rates of 0.001 and 0.0001. Therefore, it can be concluded in this study that the GRU method is more accurate and effective compared to the LSTM method in predicting stock prices.

Keywords


GRU; LSTM; MAPE; RMSE; Stock Prices

Full Text:

PDF

References


A. N. Fadila and C. Nuswandari, “Apa Saja Faktor-Faktor Yang Mempengaruhi Harga Saham?,†2022. [Online]. Available: http://journal.stekom.ac.id/index.php/E-Bisnis■page283

D. Septiani, A. Martono, and L. Karlina, “Pengenalan Manajemen Investasi dan Pasar Modal Bagi Siswa/I dan Guru Akuntansi SMK Bintang Nusantara,†2020.

A. B. Untoro, “Prediksi Harga Saham Dengan Menggunakan Jaringan Syaraf Tiruan,†Jurnal Teknologi Informatika dan Komputer, vol. 6, no. 2, pp. 103–111, Sep. 2020, doi: 10.37012/jtik.v6i2.212.

Y. D. Lestari, E. Santoso, and A. Ridok, “Prediksi Harga Saham Menggunakan Metode Extreme Learning Machine (ELM) (Studi Kasus: Saham PT Bank Rakyat Indonesia),†2021. [Online]. Available: http://j-ptiik.ub.ac.id

S. N. Afifah and N. Fauziyyah, “Dampak Resesi 2023 terhadap Harga Saham di Indonesia,†2023.

D. Kusumawati and M. Safiq, “Analisis Faktor-Faktor yang Mempengaruhi Investment Opportunity Set dan Implikasinya Terhadap Return Saham,†2019.

Imam Halimi and Wahyu Andhyka Kusuma, “Prediksi Indeks Harga Saham Gabungan (IHSG) Menggunakan Algoritma Neural Network,†2018, [Online]. Available: https://id.investing.com/indices/idx-composite-historical-

M. Abdul Dwiyanto Suyudi, E. C. Djamal, A. Maspupah Jurusan Informatika, and F. Sains dan Informatika Universitas Jenderal Achmad Yani Cimahi, “Prediksi Harga Saham menggunakan Metode Recurrent Neural Network,†2019.

M. Ningsih, “Prediksi Harga Saham Harian PT BTPN Syariah Tbk Menggunakan Model Arima dan Model Garch,†Jurnal Ilmiah Ekonomi Islam, vol. 7, no. 03, pp. 1573–1580, 2021, doi: 10.29040/jiei.v7i3.2795.

A. Muliani Harahap and S. Fitrie, “IMPLEMENTASI GATED RECURRENT UNIT (GRU) UNTUK PREDIKSI HARGA SAHAM BANK KONVENSIONAL DI INDONESIA,†JISTech (Journal of Islamic Science and Technology) JISTech, vol. 6, no. 2, pp. 42–49, 2021, [Online]. Available: http://jurnal.uinsu.ac.id/index.php/jistech

W. Hastomo, A. Satyo, B. Karno, N. Kalbuana, E. Nisfiani -4, and L. Etp -, “Optimasi Deep Learning untuk Prediksi Saham di Masa Pandemi Covid-19,†2021.

G. Budiprasetyo, M. Hani’ah, and D. Z. Aflah, “Prediksi Harga Saham Syariah Menggunakan Algoritma Long Short-Term Memory (LSTM),†Jurnal Nasional Teknologi dan Sistem Informasi, vol. 8, no. 3, pp. 164–172, Jan. 2023, doi: 10.25077/teknosi.v8i3.2022.164-172.

R. A. Saputra, Y. Azhar, and V. Rahmayanti, “Prediksi Permintaan Kargo pada Cargo Service Center Tangerang City Menggunakan Metode Gated Recurrent Unit,†REPOSITOR, vol. 2, no. 8, pp. 1113–1122, 2020.

Khalis Sofi, Aswan Supriyadi Sunge, Sasmitoh Rahmad Riady, and Antika Zahrotul Kamalia, “PERBANDINGAN ALGORITMA LINEAR REGRESSION, LSTM, DAN GRU DALAM MEMPREDIKSI HARGA SAHAM DENGAN MODEL TIME SERIES,†SEMINASTIKA, vol. 3, no. 1, pp. 39–46, Nov. 2021, doi: 10.47002/seminastika.v3i1.275.

A. Yunizar, T. Rismawan, D. Marisa Midyanti, R, and F. H. MIPA Universitas Tanjungpura Jalan Hadari Nawawi Pontianak, “Penerapan Metode Recurrent Neural Network Model Gated Recurrent Unit Untuk Prediksi Harga Cryptocurrency,†2023.

L. Wiranda and M. Sadikin, “Penerapan Long Short Term Memory pada Data Time Series untuk Memprediksi Penjualan Produk PT. Metiska Farma,†2019.

M. Agus Sholeh and R. Hidayat, “Perbandingan Model LSTM Dan GRU Untuk Memprediksi Harga Minyak Goreng di Indonesia,†Sains dan Teknologi, vol. 9, no. 3, pp. 2022–800, 2022, doi: 10.47668/edusaintek.v9i3.593.

I. Nabillah and I. Ranggadara, “Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut,†JOINS (Journal of Information System), vol. 5, no. 2, pp. 250–255, Nov. 2020, doi: 10.33633/joins.v5i2.3900.

F. Andreas, U. Enri, and U. Singaperbangsa Karawang Abstract, “Perbandingan Algoritma Backpropagation Neural Network dan Long Short-Term Memory dalam Memprediksi Harga Bitcoin,†Jurnal Ilmiah Wahana Pendidikan, vol. 2022, no. 12, pp. 547–558, 2022, doi: 10.5281/zenodo.700976.

A. Kurniawati, M. Sabri Ahmad, M. Fhadli, and S. Lutfi, “Analisis Perbandingan Metode Time Series Forecasting Untuk Prediksi Penjualan Obat di Apotek (Studi Kasus: Kimia Farma Apotek Takoma),†2023.

Moch Farryz Rizkilloh and Sri Widiyanesti, “Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short Term Memory (LSTM),†Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 1, pp. 25–31, Feb. 2022, doi: 10.29207/resti.v6i1.3630.

I. Damanik, I. B. P. Gunadnya, and I. G. N. A. Aviantara, “Penggunaan Beberapa Model Peramalan (Forecasting) untuk Produksi Gula Kristal Putih di PT. Perkebunan Nusantara X,†2022. [Online]. Available: http://ojs.unud.ac.id/index.php/beta




DOI: https://doi.org/10.30865/mib.v8i2.7342

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.