Sentiment Classification of The Capsule Hotel Guest Reviews using Cross-Industry Standard Process for Data Mining (CRISP-DM)

 (*)Yerik Afrianto Singgalen Mail (Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia)

(*) Corresponding Author

Submitted: January 12, 2024; Published: January 31, 2024

Abstract

Technology advancements empower hotel accommodation service managers to undertake innovative initiatives to enhance guest appeal and ensure safety and comfort. One manifestation of such innovation is exemplified by The Capsule Hotel, which offers novel experiences to both domestic and international tourists. This research seeks to assess the sentiments of guests at The Capsule Malioboro, employing the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology and the Support Vector Machine (SVM) technique with Synthetic Minority Over-sampling Technique (SMOTE) operators. The findings demonstrate that when operated without SMOTE, the SVM algorithm yields a confusion matrix displaying an accuracy of 99.01%, precision of 99.00%, recall of 100%, AUC of 0.944, and an f-measure of 99.49%. With the integration of SMOTE, there is a notable enhancement across all metrics, with accuracy, precision, recall, AUC, and f-measure, all achieving perfect scores of 100%. In addition, an analysis of the top 10 frequently used words in guest reviews, such as "solo," "good," "place," "staff," "comfortable," "room," "clean," "hotel," "capsule," and "Malioboro," provides additional insights. Examining guest profiles within the dataset uncovers a strong inclination among Indonesian individuals to opt for The Capsule Malioboro's services, with solo travelers being the predominant guest type and most stays lasting only a single day. The capsule accommodations cater to various gender preferences, and an examination of overnight data indicates a rising trend, particularly in December 2022 and 2023. These insights enable the hotel to discern guest preferences, offering valuable information for enhancing service ratings and addressing specific needs.

Keywords


CRISP-DM; SMOTE; SVM; Capsule; Guest; Hotel

Full Text:

PDF


Article Metrics

Abstract view : 97 times
PDF - 30 times

References

D. M. Lemy and E. Heidi, “The Potential of Capsule Hotel Service in Semarang,” E-Journal Tour., vol. 6, no. 2, pp. 196–209, 2019, doi: 10.24922/eot.v6i2.49944.

J. É. Pelet, E. Lick, and B. Taieb, “The internet of things in upscale hotels: its impact on guests’ sensory experiences and behavior,” Int. J. Contemp. Hosp. Manag., vol. 33, no. 11, pp. 4035–4056, 2021, doi: 10.1108/IJCHM-02-2021-0226.

V. O. Olorunsola, M. B. Saydam, T. T. Lasisi, and K. K. Eluwole, “Customer experience management in capsule hotels: a content analysis of guest online review,” J. Hosp. Tour. Insights, vol. 6, no. 5, pp. 2462–2483, 2023, doi: 10.1108/JHTI-03-2022-0113.

A. Gelbman, “Seaside hotel location and environmental impact: land use dilemmas,” J. Tour. Cult. Chang., vol. 20, no. 4, pp. 530–550, 2022, doi: 10.1080/14766825.2021.1961797.

W. Pratama, Nursyam, and A. E. Oktawati, “Penerapan Arsitektur Modern Fungsionalisme pada Rancangan Hotel Kapsul di Toraja,” Archit. Student J., vol. 5, no. 2, pp. 200–205, 2023.

D. Luna and R. D. Hanifah, “Pengaruh Kualitas Layanan Terhadap Keputusan Pembelian Di Capsule Hotel Old Batavia, Jakarta Pusat,” Sadar Wisata J. Pariwisata, vol. 3, no. 2, pp. 101–115, 2020, doi: 10.32528/sw.v3i2.3875.

Y. Yağmur, A. Demirel, and G. D. Kılıç, “Top quality hotel managers’ perspectives on smart technologies: an exploratory study,” J. Hosp. Tour. Insights, 2023, doi: 10.1108/JHTI-09-2022-0457.

A. C. Bagio and L. P. Budidharmanto, “Guest Pro-environmental Behavior Towards the Implementation of Energy Efficiency through Smart Key Technology in Capsule Hotel,” Indones. J. Soc. Environ. Issues, vol. 4, no. 2, pp. 184–191, 2023, doi: 10.47540/ijsei.v4i2.1009.

I. Ezzaouia and J. Bulchand-Gidumal, “The impact of information technology adoption on hotel performance: Evidence from a developing country,” J. Qual. Assur. Hosp. Tour., vol. 24, no. 5, pp. 688–710, 2023, doi: 10.1080/1528008X.2022.2077886.

R. T. R. Qiu, J. Park, F. Hao, and K. Chon, “Hotel services in the digital age: Heterogeneity in guests’ contactless technology acceptance,” J. Hosp. Mark. Manag., vol. 33, no. 1, pp. 33–56, 2023, doi: 10.1080/19368623.2023.2239219.

X. Zhang, P. Tavitiyaman, and W. Y. Tsang, “Preferences of Technology Amenities, Satisfaction and Behavioral Intention: The Perspective of Hotel Guests in Hong Kong,” J. Qual. Assur. Hosp. Tour., vol. 24, no. 5, pp. 545–575, 2023, doi: 10.1080/1528008X.2022.2070817.

İ. A. Özen and E. Özgül Katlav, “Aspect-based sentiment analysis on online customer reviews: a case study of technology-supported hotels,” J. Hosp. Tour. Technol., vol. 14, no. 2, pp. 102–120, 2023, doi: 10.1108/JHTT-12-2020-0319.

A. M. Elshaer and A. M. Marzouk, “Memorable tourist experiences: the role of smart tourism technologies and hotel innovations,” Tour. Recreat. Res., vol. 0, no. 0, pp. 1–13, 2022, doi: 10.1080/02508281.2022.2027203.

B. A. Osei and M. Cheng, “Preferences and challenges towards the adoption of the fourth industrial revolution technologies by hotels: a multilevel concurrent mixed approach,” Eur. J. Innov. Manag., 2023, doi: 10.1108/EJIM-09-2022-0529.

J. Suleri, R. Meijer, and E. Tarus, “Exploring hotel identity by focusing on customer experience analysis,” Res. Hosp. Manag., vol. 11, no. 2, pp. 113–120, 2021, doi: 10.1080/22243534.2021.1917178.

C. Liu and K. Hung, “Improved or decreased? Customer experience with self-service technology versus human service in hotels in China,” J. Hosp. Mark. Manag., vol. 31, no. 2, pp. 176–204, 2022, doi: 10.1080/19368623.2021.1941475.

K. Adiwijaya and N. Nurmala, “Experiential marketing in the budget hotel: do Gen Y and Gen Z change the game?,” Consum. Behav. Tour. Hosp., vol. 18, no. 4, pp. 467–482, 2023, doi: 10.1108/CBTH-10-2022-0185.

A. Syariati, N. E. Syariati, R. Jafar, and B. U. Rusydi, “Innovation norms during COVID-19 and Indonesian hotel performance: Innovative energy use as a mediating variable,” Cogent Bus. Manag., vol. 10, no. 1, 2023, doi: 10.1080/23311975.2023.2194119.

A. S. Hussein and R. Hapsari, “Heritage experiential quality and behavioural intention: lessons from Indonesian heritage hotel consumers,” J. Herit. Tour., pp. 1–20, 2020, doi: 10.1080/1743873X.2020.1792474.

M. Amin, K. Ryu, C. Cobanoglu, and A. Nizam, “Determinants of online hotel booking intentions: website quality, social presence, affective commitment, and e-trust,” J. Hosp. Mark. Manag., vol. 30, no. 7, pp. 845–870, 2021, doi: 10.1080/19368623.2021.1899095.

R. C. Ho, M. S. Withanage, and K. W. Khong, “Sentiment drivers of hotel customers: a hybrid approach using unstructured data from online reviews,” Asia-Pacific J. Bus. Adm., vol. 12, no. 3–4, pp. 237–250, 2020, doi: 10.1108/APJBA-09-2019-0192.

S. Bagherzadeh, S. Shokouhyar, H. Jahani, and M. Sigala, “A generalizable sentiment analysis method for creating a hotel dictionary: using big data on TripAdvisor hotel reviews,” J. Hosp. Tour. Technol., vol. 12, no. 2, pp. 210–238, 2021, doi: 10.1108/JHTT-02-2020-0034.

A. Tanrısevdi, G. Öztürk, and A. C. Öztürk, “A supervised data mining approach for predicting comment card ratings,” Int. J. Contemp. Hosp. Manag., vol. 34, no. 5, pp. 1823–1853, 2022, doi: 10.1108/IJCHM-05-2021-0675.

Y. A. Singgalen, “Analisis Sentimen Pengunjung Pulau Komodo dan Pulau Rinca di Website Tripadvisor Berbasis CRISP-DM,” J. Inf. Syst. Res., vol. 4, no. 2, pp. 614–625, 2023, doi: 10.47065/josh.v4i2.2999.

Y. A. Singgalen, “Analisis Performa Algoritma NBC , DT , SVM dalam Klasifikasi Data Ulasan Pengunjung Candi Borobudur Berbasis CRISP-DM,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1634–1646, 2022, doi: 10.47065/bits.v4i3.2766.

Y. A. Singgalen, “Analisis Sentimen Wisatawan terhadap Taman Nasional Bunaken dan Top 10 Hotel Rekomendasi Tripadvisor Menggunakan Algoritma SVM dan DT berbasis CRISP-DM,” J. Comput. Syst. Informatics, vol. 4, no. 2, pp. 367–379, 2023, doi: 10.47065/josyc.v4i2.3092.

Y. A. Singgalen, “Analisis Sentimen Konsumen terhadap Food , Services , and Value di Restoran dan Rumah Makan Populer Kota Makassar Berdasarkan Rekomendasi Tripadvisor Menggunakan Metode CRISP-DM dan,” Build. Informatics, Technol. Sci., vol. 4, no. 4, pp. 1899–1914, 2023, doi: 10.47065/bits.v4i4.3231.

A. Marandi, M. Tasavori, and M. Najmi, “New insights into hotel customer’s revisiting intentions, based on big data,” Int. J. Contemp. Hosp. Manag., vol. 36, no. 1, pp. 292–311, 2023, doi: 10.1108/IJCHM-06-2022-0719.

N. H. S. Al-Kumaim, M. Samer, S. H. Hassan, M. S. Shabbir, F. Mohammed, and S. Al-Shami, “New demands by hotel customers post COVID-19 era,” Foresight, no. May, 2023, doi: 10.1108/FS-05-2023-0082.

R. K. Dwivedi, M. Pandey, A. Vashisht, D. K. Pandey, and D. Kumar, “Assessing behavioral intention toward green hotels during COVID-19 pandemic: the moderating role of environmental concern,” J. Tour. Futur., pp. 1–17, 2022, doi: 10.1108/JTF-05-2021-0116.

K. Puh and M. Bagić Babac, “Predicting sentiment and rating of tourist reviews using machine learning,” J. Hosp. Tour. Insights, vol. 6, no. 3, pp. 1188–1204, 2023, doi: 10.1108/JHTI-02-2022-0078.

R. Obiedat et al., “Sentiment Analysis of Customers’ Reviews Using a Hybrid Evolutionary SVM-Based Approach in an Imbalanced Data Distribution,” IEEE Access, vol. 10, pp. 22260–22273, 2022, doi: 10.1109/ACCESS.2022.3149482.

N. S. Mohd Nafis and S. Awang, “An Enhanced Hybrid Feature Selection Technique Using Term Frequency-Inverse Document Frequency and Support Vector Machine-Recursive Feature Elimination for Sentiment Classification,” IEEE Access, vol. 9, no. Ml, pp. 52177–52192, 2021, doi: 10.1109/ACCESS.2021.3069001.

R. Rahimi, M. Thelwall, F. Okumus, and A. Bilgihan, “Know your guests’ preferences before they arrive at your hotel: evidence from TripAdvisor,” Consum. Behav. Tour. Hosp., vol. 17, no. 1, pp. 89–106, 2022, doi: 10.1108/CBTH-06-2021-0148.

M. J. Sanchez-Franco, G. Cepeda-Carrion, and J. L. Roldán, “Understanding relationship quality in hospitality services: A study based on text analytics and partial least squares,” Internet Res., vol. 29, no. 3, pp. 478–503, 2019, doi: 10.1108/IntR-12-2017-0531.

C. K. H. Lee and Y. K. Tse, “Improving peer-to-peer accommodation service based on text analytics,” Ind. Manag. Data Syst., vol. 121, no. 2, pp. 209–227, 2021, doi: 10.1108/IMDS-02-2020-0105.

X. Lai, F. Wang, and X. Wang, “Asymmetric relationship between customer sentiment and online hotel ratings: the moderating effects of review characteristics,” Int. J. Contemp. Hosp. Manag., vol. 33, no. 6, pp. 2137–2156, 2021, doi: 10.1108/IJCHM-07-2020-0708.

R. A. Barro, I. D. Sulvianti, and M. Afendi, “Penerapan Synthetic Minority Oversampling Technique (Smote) Terhadap Data Tidak Seimbang Pada Pembuatan Model Komposisi Jamu,” Xplore J. Stat., vol. 1, no. 1, pp. 1–6, 2013.

Y. E. Kurniawati, “Class Imbalanced Learning Menggunakan Algoritma Synthetic Minority Over-sampling Technique – Nominal (SMOTE-N) pada Dataset Tuberculosis Anak,” J. Buana Inform., vol. 10, no. 2, pp. 134–143, 2019, doi: 10.24002/jbi.v10i2.2441.

D. N. Fitriana and Y. Sibaroni, “Sentiment Analysis on KAI Twitter Post Using Multiclass Support Vector Machine (SVM),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 5, pp. 846–853, 2020, doi: 10.29207/resti.v4i5.2231.

A. Karim, “Perbandingan Prediksi Kemiskinan di Indonesia Menggunakan Support Vector Machine (SVM) dengan Regresi Linear,” J. Sains Mat. dan Stat., vol. 6, no. 1, pp. 107–112, 2020, doi: 10.24014/jsms.v6i1.9259.

E. A. Nida, “Analisis Kinerja Algoritma Support Vector Machine (SVM) Guna Pengambilan Keputusan Beli/Jual Pada Saham PT Elnusa Tbk. (ELSA),” J. Transform., vol. 17, no. 2, pp. 160–170, 2020, doi: 10.26623/transformatika.v17i2.1649.

N. L. W. S. R. Ginantra, C. P. Yanti, G. D. Prasetya, I. B. G. Sarasvandana, and I. K. A. G. Wiguna, “Analisis Sentimen Ulasan Villa di Ubud Menggunakan Metode Naive Bayes, Decision Tree, dan k-NN,” Janapati, vol. 11, no. 3, pp. 205–216, 2022.

Z. Z. Zarezadeh, R. Rastegar, and Z. Xiang, “Big data analytics and hotel guest experience: a critical analysis of the literature,” Int. J. Contemp. Hosp. Manag., vol. 34, no. 6, pp. 2320–2336, 2022, doi: 10.1108/IJCHM-10-2021-1293.

J. L. Nicolau, Z. Xiang, and D. Wang, “Daily online review sentiment and hotel performance,” Int. J. Contemp. Hosp. Manag., 2023, doi: 10.1108/IJCHM-05-2022-0594.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Sentiment Classification of The Capsule Hotel Guest Reviews using Cross-Industry Standard Process for Data Mining (CRISP-DM)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.