Implementation of CRISP-DM for Social Network Analysis (SNA) of Tourism and Travel Vlog Content Reviews

 (*)Yerik Afrianto Singgalen Mail (Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia)

(*) Corresponding Author

Submitted: January 11, 2024; Published: January 30, 2024

Abstract

Technological developments have facilitated the process of creating and publishing digital content on various platforms while influencing application user behavior in terms of consumption. In the context of tourism and travel vlog content, the publication of travel content influences perceptions and triggers the intention of visiting the destination in which the video is taken. In addition, content reviews can be seen in the comment column, which shows the response from content creators to tourists related to the topics discussed in the video content. This study aims to analyze content reviewers' social network patterns and sentiments using the Cross-Industry Standard Process for Data Mining (CRISP-DM) approach. Meanwhile, the model used in this study is Social Network Analysis (SNA) and Sentiment Classification based on analyzing network patterns of "whom, mention whom," and "who replies who," based on diameter, density, reciprocity, centralization, and modularity. The stages in the CRISP-DM method consist of business understanding, data understanding, modeling, evaluation, and deployment. The results of this study show that at the business understanding stage, tourism and travel vlog content reviews with Waseda Boys Indonesia Trip video comment datasets and Waseda Boys Trip to Manado and Likupang video and Waseda Boys Trip to Labuan Bajo video. Scraping content review data from the YouTube platform is carried out at the data understanding stage based on author, description, Global Unique Identification (GUID), like_count, link, pub_date, and author channel URL. In the modeling stage, the interaction pattern between authors in the form of networks is visualized and analyzed based on clusters. At the evaluation stage, an evaluation is carried out based on sentiment related to content related to tourism activities. At the deployment stage, recommendations for digital tourism marketing strategies based on tourism and travel vlogs can be known. Thus, tourism and travel vlog content play an important role in triggering tourism intentions so that it is effectively used in destination marketing strategies in the digital era.

Keywords


CRISP-DM; SNA; Tourism; Travel Vlog; Content

Full Text:

PDF


Article Metrics

Abstract view : 142 times
PDF - 45 times

References

T. Zhang and X. Huang, “Viral marketing: influencer marketing pivots in tourism–a case study of meme influencer instigated travel interest surge,” Curr. Issues Tour., vol. 25, no. 4, pp. 508–515, 2022, doi: 10.1080/13683500.2021.1910214.

İ. Kılıç, C. Seçilmiş, and C. Özdemir, “The role of travel influencers in volunteer tourism: an application of the cognitive response theory,” Curr. Issues Tour., vol. 0, no. 0, pp. 1–15, 2023, doi: 10.1080/13683500.2023.2174087.

İ. Kılıç and M. Gürlek, “Green influencer marketing: conceptualization, scale development, and validation: an application to tourism products,” J. Sustain. Tour., vol. 0, no. 0, pp. 1–26, 2023, doi: 10.1080/09669582.2023.2273755.

C. Y. Luo, C. H. Tsai, C. H. Su, and M. H. Chen, “From stage to a sense of place: the power of tourism performing arts storytelling for sustainable tourism growth,” J. Travel Tour. Mark., vol. 40, no. 8, pp. 728–743, 2023, doi: 10.1080/10548408.2023.2293012.

A. H. Zins and A. Abbas Adamu, “Heritage storytelling in destination marketing: cases from Malaysian states,” J. Herit. Tour., vol. 0, no. 0, pp. 1–13, 2023, doi: 10.1080/1743873X.2023.2232476.

J. Bulchand-Gidumal, E. William Secin, P. O’Connor, and D. Buhalis, “Artificial intelligence’s impact on hospitality and tourism marketing: exploring key themes and addressing challenges,” Curr. Issues Tour., vol. 0, no. 0, pp. 1–18, 2023, doi: 10.1080/13683500.2023.2229480.

F. Frenzel, J. Giddy, and T. Frisch, “Digital technology, tourism and geographies of inequality,” Tour. Geogr., vol. 24, no. 6–7, pp. 923–933, 2022, doi: 10.1080/14616688.2022.2142843.

S. Menon, S. Bhatt, and S. Sharma, “A study on envisioning Indian tourism–Through cultural tourism and sustainable digitalization,” Cogent Soc. Sci., vol. 7, no. 1, pp. 1–19, 2021, doi: 10.1080/23311886.2021.1903149.

D. Paiva, L. Carvalho, E. Brito-Henriques, A. M. Sousa, A. L. Soares, and S. T. Azambuja, “Digital storytelling and hopeful last chance tourism experiences,” Tour. Geogr., vol. 25, no. 5, pp. 1428–1444, 2023, doi: 10.1080/14616688.2023.2224043.

R. A. Kinseng, A. Kartikasari, N. Aini, R. Gandi, and D. Dean, “COVID-19 and the emergence of virtual tourism in Indonesia: A sociological perspective,” Cogent Soc. Sci., vol. 8, no. 1, pp. 1–15, 2022, doi: 10.1080/23311886.2022.2026557.

A. M. Bustamante Duarte et al., “Creative industries in Indonesia: a socio-spatial exploration of three kampongs in Bandung,” Creat. Ind. J., vol. 0, no. 0, pp. 1–29, 2022, doi: 10.1080/17510694.2022.2077557.

B. Vita, T. Deitiana, and W. Ruswidiono, “The online marketing of Indonesian street food in Jakarta,” Cogent Bus. Manag., vol. 8, no. 1, 2021, doi: 10.1080/23311975.2021.1996215.

C. Miguel, C. Clare, C. J. Ashworth, and D. Hoang, “Self-branding and content creation strategies on Instagram: A case study of foodie influencers,” Inf. Commun. Soc., vol. 0, no. 0, pp. 1–21, 2023, doi: 10.1080/1369118X.2023.2246524.

H. Saini, P. Kumar, and S. Oberoi, “Welcome to the destination! Social media influencers as cogent determinant of travel decision: A systematic literature review and conceptual framework,” Cogent Soc. Sci., vol. 9, no. 1, pp. 1–27, 2023, doi: 10.1080/23311886.2023.2240055.

J. Jacobson and B. Harrison, “Sustainable fashion social media influencers and content creation calibration,” Int. J. Advert., vol. 41, no. 1, pp. 150–177, 2022, doi: 10.1080/02650487.2021.2000125.

G. M. Ji, J. H. Cheah, M. Sigala, S. I. Ng, and W. C. Choo, “Tell me about your culture, to predict your tourism activity preferences and evaluations: cross-country evidence based on user-generated content,” Asia Pacific J. Tour. Res., vol. 28, no. 10, pp. 1052–1070, 2023, doi: 10.1080/10941665.2023.2283599.

Z. Wang, P. Udomwong, J. Fu, and P. Onpium, “Destination image: A review from 2012 to 2023,” Cogent Soc. Sci., vol. 9, no. 1, 2023, doi: 10.1080/23311886.2023.2240569.

X. Guo and J. A. Pesonen, “The role of online travel reviews in evolving tourists’ perceived destination image,” Scand. J. Hosp. Tour., vol. 22, no. 4–5, pp. 372–392, 2022, doi: 10.1080/15022250.2022.2112414.

Y. Gao, Q. Zhang, X. Xu, F. Jia, and Z. Lin, “Service design for the destination tourism service ecosystem: a review and extension,” Asia Pacific J. Tour. Res., vol. 27, no. 3, pp. 225–245, 2022, doi: 10.1080/10941665.2022.2046119.

J. Bokrantz, M. Subramaniyan, and A. Skoogh, “Realising the promises of artificial intelligence in manufacturing by enhancing CRISP-DM,” Prod. Plan. Control, vol. 0, no. 0, pp. 1–21, 2023, doi: 10.1080/09537287.2023.2234882.

S. Younis and A. Ahsan, “Know Your Stars before They Fall Apart: A Social Network Analysis of Telecom Industry to Foster Employee Retention Using Data Mining Technique,” IEEE Access, vol. 9, pp. 16467–16487, 2021, doi: 10.1109/ACCESS.2021.3050327.

Z. Lin, Y. Zhang, Q. Gong, Y. Chen, A. Oksanen, and A. Y. Ding, “Structural Hole Theory in Social Network Analysis: A Review,” IEEE Trans. Comput. Soc. Syst., vol. 9, no. 3, pp. 724–739, 2022, doi: 10.1109/TCSS.2021.3070321.

S. Sen Zhang, X. Liang, Y. D. Wei, and X. Zhang, “On Structural Features, User Social Behavior, and Kinship Discrimination in Communication Social Networks,” IEEE Trans. Comput. Soc. Syst., vol. 7, no. 2, pp. 425–436, 2020, doi: 10.1109/TCSS.2019.2962231.

M. Valeri and R. Baggio, “Italian tourism intermediaries: a social network analysis exploration,” Curr. Issues Tour., vol. 24, no. 9, pp. 1270–1283, 2021, doi: 10.1080/13683500.2020.1777950.

D. López-Molina and J. I. Pulido-Fernández, “Analysis of the interaction and collaboration of the actors of a tourist destination from a network perspective,” Curr. Issues Tour., no. May, pp. 1–18, 2023, doi: 10.1080/13683500.2023.2214356.

R. A. Tabaeeian, A. Yazdi, N. Mokhtari, and A. Khoshfetrat, “Host-tourist interaction, revisit intention and memorable tourism experience through relationship quality and perceived service quality in ecotourism,” J. Ecotourism, vol. 22, no. 3, pp. 406–429, 2023, doi: 10.1080/14724049.2022.2046759.

J. Bulchand-Gidumal, “The case of BeReal and spontaneous online social networks and their impact on tourism: research agenda,” Curr. Issues Tour., vol. 0, no. 0, pp. 1–5, 2023, doi: 10.1080/13683500.2023.2191174.

G. Prayitno et al., “Social capital for sustainable tourism development in Indonesia,” Cogent Soc. Sci., vol. 10, no. 1, pp. 1–23, 2023, doi: 10.1080/23311886.2023.2293310.

S. Gössling, “Technology, ICT and tourism: from big data to the big picture,” J. Sustain. Tour., vol. 29, no. 5, pp. 849–858, 2020, doi: 10.1080/09669582.2020.1865387.

Y. A. Singgalen, “Penerapan Metode CRISP-DM untuk Optimalisasi Strategi Pemasaran STP (Segmenting , Targeting , Positioning) Layanan Akomodasi Hotel , Homestay , dan Resort,” J. Media Inform. Budidarma, vol. 7, no. 4, pp. 1980–1993, 2023, doi: 10.30865/mib.v7i4.6896.

Y. A. Singgalen, “Penerapan CRISP-DM dalam Klasifikasi Sentimen dan Analisis Perilaku Pembelian Layanan Akomodasi Hotel Berbasis Algoritma Decision Tree ( DT ),” J. Sist. Komput. dan Inform., vol. 5, no. 2, pp. 237–248, 2023, doi: 10.30865/json.v5i2.7081.

Y. A. Singgalen, “Implementasi Metode CRISP-DM dalam Analisis Model Pendukung Keputusan Simple Additive Weighting dan Pengembangan Basis Data Riwayat Pembelian Layanan Akomodasi Hotel,” J. Sist. Komput. dan Inform., vol. 5, no. 2, pp. 308–317, 2023, doi: 10.30865/json.v5i2.7153.

Y. A. Singgalen, “Analisis Performa Algoritma NBC , DT , SVM dalam Klasifikasi Data Ulasan Pengunjung Candi Borobudur Berbasis CRISP-DM,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1634–1646, 2022, doi: 10.47065/bits.v4i3.2766.

Y. A. Singgalen, “Analisis Perilaku Wisatawan Berdasarkan Data Ulasan di Website Tripadvisor Menggunakan CRISP-DM : Wisata Minat Khusus Pendakian Gunung Rinjani dan Gunung Bromo,” J. Comput. Syst. Informatics, vol. 4, no. 2, pp. 326–338, 2023, doi: 10.47065/josyc.v4i2.3042.

Y. A. Singgalen, “Analisis Sentimen Pengunjung Pulau Komodo dan Pulau Rinca di Website Tripadvisor Berbasis CRISP-DM,” J. Inf. Syst. Res., vol. 4, no. 2, pp. 614–625, 2023, doi: 10.47065/josh.v4i2.2999.

F. Martinez-Plumed et al., “CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 8, pp. 3048–3061, 2021, doi: 10.1109/TKDE.2019.2962680.

N. A. Azmi, A. T. Fathani, D. P. Sadayi, I. Fitriani, and M. R. Adiyaksa, “Social Media Network Analysis (SNA): Identifikasi Komunikasi dan Penyebaran Informasi Melalui Media Sosial Twitter,” J. Media Inform. Budidarma, vol. 5, no. 4, pp. 1422–1430, 2021, doi: 10.30865/mib.v5i4.3257.

S. D. Rehatta, E. Sediyono, and I. Sembiring, “Analisis Penyebaran Informasi Vaksin Covid-19 Pada Twitter Menggunakan Kolaborasi SNA dan Sentiment Analysis,” J. Media Inform. Budidarma, vol. 6, no. 2, pp. 1145–1152, 2022, doi: 10.30865/mib.v6i2.3955.

A. Leiras and C. Eusébio, “Perceived image of accessible tourism destinations: a data mining analysis of Google Maps reviews,” Curr. Issues Tour., vol. 0, no. 0, pp. 1–19, 2023, doi: 10.1080/13683500.2023.2230338.

M. H. Dewantara, S. Gardiner, and X. Jin, “Travel vlog ecosystem in tourism digital marketing evolution: a narrative literature review,” Curr. Issues Tour., vol. 26, no. 19, pp. 3125–3139, 2023, doi: 10.1080/13683500.2022.2136568.

Z. Wu and Y. Ge, “Influence of online engagement of WeChat functions on tourist participation behaviour and leisure travel in Shanghai,” J. Mark. Commun., vol. 00, no. 00, pp. 1–24, 2023, doi: 10.1080/13527266.2023.2201591.

C. Seçilmiş, C. Özdemir, and İ. Kılıç, “How travel influencers affect visit intention? The roles of cognitive response, trust, COVID-19 fear and confidence in vaccine,” Curr. Issues Tour., vol. 25, no. 17, pp. 2789–2804, 2022, doi: 10.1080/13683500.2021.1994528.

F. Li and Z. Zhou, “How does travel social media influencer humour influence viewers’ visit intention?,” Curr. Issues Tour., vol. 0, no. 0, pp. 1–17, 2023, doi: 10.1080/13683500.2023.2291114.

S. Kang, S. Cole, and Y. Choe, “The influence of future time perspective on older adults’ travel intention,” Curr. Issues Tour., vol. 26, no. 8, pp. 1254–1267, 2023, doi: 10.1080/13683500.2022.2051448.

B. Paddison and A. Walmsley, “First holidays abroad: Authenticating the learning environment through memories and storytelling,” J. Teach. Travel Tour., vol. 21, no. 3, pp. 221–234, 2021, doi: 10.1080/15313220.2021.1878481.

E. Sthapit, P. Björk, D. N. Coudounaris, and J. Jiménez-Barreto, “Memorable Halal Tourism Experience and Its Effects on Place Attachment,” Int. J. Hosp. Tour. Adm., vol. 00, no. 00, pp. 1–27, 2022, doi: 10.1080/15256480.2022.2135666.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementation of CRISP-DM for Social Network Analysis (SNA) of Tourism and Travel Vlog Content Reviews

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.