Pemilihan Fitur Menggunakan Algoritma Chi-Square Dan Particle Swarm Optimization (PSO) Untuk Meningkatkan Kinerja Deep Neural Network Pada Deteksi Penyakit Diabetes

 (*)Wahyu Budi Santosa Mail (Universitas Dian Nuswantoro, Semarang, Indonesia)
 Abdul Syukur (Universitas Dian Nuswantoro, Semarang, Indonesia)
 Purwanto Purwanto (Universitas Dian Nuswantoro, Semarang, Indonesia)

(*) Corresponding Author

Submitted: January 4, 2024; Published: January 28, 2024


Diabetes is a chronic disease caused by impaired glucose metabolism in the body. In type 1 diabetes, the body's immune system attacks and destroys the insulin-producing cells in the pancreas, so that the body is unable to produce sufficient amounts of insulin. In type 2 diabetes, the body is still able to produce insulin, but is unable to use it effectively. Insulin is a hormone that is useful for controlling glucose in blood cells. If glucose in the blood is not controlled it can cause a number of problems, such as heart disease, stroke, blindness, nerve damage and so on. So the research in this study formulated an increase in accuracy in the diabetes detection process using the Deep Neural Network (DNN) method which was enhanced with the chi-square and PSO methods through the attribute selection process. The results of testing the PIMA dataset with DNN obtained an accuracy value of 76.62% with an AUC value of 0.772. Meanwhile, testing using the DNN method for attribute selection using the Chi-square method and optimization with PSO obtained an accuracy value of 85.71% with an AUC value of 0.818. So it can be concluded from testing diabetes data using the Deep Neural Network method which adds Chi-square as a selection attribute and is optimized using PSO which is better when compared to the DNN method.


Diabetes; Chi-Square; PSO; Deep Neural Network

Full Text:


Article Metrics

Abstract view : 168 times
PDF - 31 times


M. B. Hanif and Khoirudin, “Sistem Aplikasi Prediksi Penyakit Diabetes Menggunakan Fiture Selection Korelas Pearson dan Klasifikai Naive Bayes,” Pengemb. Rekayasa dan Teknol., vol. 16, no. 2, pp. 199–205, 2020.

M. T. García-Ordás, C. Benavides, J. A. Benítez-Andrades, H. Alaiz-Moretón, and I. García-Rodríguez, “Diabetes detection using deep learning techniques with oversampling and feature augmentation,” Comput. Methods Programs Biomed., vol. 202, 2021, doi: 10.1016/j.cmpb.2021.105968.

H. Sun et al., “IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.,” Diabetes Res. Clin. Pract., vol. 183, p. 109119, Jan. 2022, doi: 10.1016/j.diabres.2021.109119.

Y. Du, A. R. Rafferty, F. M. McAuliffe, L. Wei, and C. Mooney, “An explainable machine learning-based clinical decision support system for prediction of gestational diabetes mellitus,” Sci. Rep., vol. 12, no. 1, pp. 1–14, 2022, doi: 10.1038/s41598-022-05112-2.

Y. Mu, X. Liu, and L. Wang, “A Pearson’s correlation coefficient based decision tree and its parallel implementation,” Inf. Sci. (Ny)., vol. 435, pp. 40–58, 2018, doi: 10.1016/j.ins.2017.12.059.

X. Gu, J. Han, Q. Shen, and P. P. Angelov, Autonomous learning for fuzzy systems: a review, vol. 56, no. 8. Springer Netherlands, 2023.

M. Iglicki, D. Zur, and A. Loewenstein, “Detection of diabetic retinopathy using deep learning analysis,” Retin. Today, vol. 2021, no. September, pp. 42–46, 2021.

J. Wu, S. Pan, X. Zhu, Z. Cai, P. Zhang, and C. Zhang, “Self-adaptive attribute weighting for Naive Bayes classification,” Expert Syst. Appl., vol. 42, no. 3, pp. 1487–1502, 2015, doi: 10.1016/j.eswa.2014.09.019.

S. R. Kamel and R. Yaghoubzadeh, “Feature selection using grasshopper optimization algorithm in diagnosis of diabetes disease,” Informatics Med. Unlocked, vol. 26, p. 100707, 2021, doi: 10.1016/j.imu.2021.100707.

T. M. Alam et al., “A model for early prediction of diabetes,” Informatics Med. Unlocked, vol. 16, no. January, p. 100204, 2019, doi: 10.1016/j.imu.2019.100204.

C. Villa-Blanco, C. Bielza, and P. Larrañaga, Feature subset selection for data and feature streams: a review, vol. 56, no. s1. Springer Netherlands, 2023.

I. Setiaji and A. Z. Fanani, “Optimasi K-means Clustering Dengan Menggunakan Particle Swarm Optimization Untuk Menentukan Jumlah Cluster Pada Kanker Serviks,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1463–1473, 2023, doi: 10.30865/mib.v7i3.6292.

C. Practice, “IDF releases report of global survey on access to medicines and supplies for people with diabetes,” Diabetes Res. Clin. Pract., vol. 129, pp. 224–225, 2017, doi: 10.1016/j.diabres.2017.06.001.

R. B. Lukmanto, Suharjito, A. Nugroho, and H. Akbar, “Early detection of diabetes mellitus using feature selection and fuzzy support vector machine,” Procedia Comput. Sci., vol. 157, pp. 46–54, 2019, doi: 10.1016/j.procs.2019.08.140.

R. Blanquero, E. Carrizosa, P. Ramírez-Cobo, and M. R. Sillero-Denamiel, “Variable selection for Naïve Bayes classification,” Comput. Oper. Res., vol. 135, p. 105456, 2021, doi: 10.1016/j.cor.2021.105456.

E. O. Omuya, G. O. Okeyo, and M. W. Kimwele, “Feature Selection for Classification using Principal Component Analysis and Information Gain,” Expert Syst. Appl., vol. 174, no. February, p. 114765, 2021, doi: 10.1016/j.eswa.2021.114765.

M. Salvi, U. R. Acharya, F. Molinari, and K. M. Meiburger, “The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis,” Comput. Biol. Med., vol. 128, p. 104129, 2021, doi: 10.1016/j.compbiomed.2020.104129.

Q. Xiao et al., “Improving lesion segmentation for diabetic retinopathy using adversarial learning,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11663 LNCS, pp. 333–344, 2019, doi: 10.1007/978-3-030-27272-2_29.

Ö. F. Arar and K. Ayan, “A Feature Dependent Naive Bayes Approach and Its Application to the Software Defect Prediction Problem,” Appl. Soft Comput. J., 2017, doi: 10.1016/j.asoc.2017.05.043.

L. Zhang, S. Feng, G. Duan, Y. Li, and G. Liu, “Detection of microaneurysms in fundus images based on an attention mechanism,” Genes (Basel)., vol. 10, no. 10, 2019, doi: 10.3390/genes10100817.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Pemilihan Fitur Menggunakan Algoritma Chi-Square Dan Particle Swarm Optimization (PSO) Untuk Meningkatkan Kinerja Deep Neural Network Pada Deteksi Penyakit Diabetes


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.