Deteksi Jamur Beracun dengan Algoritma Convolutional Neural Network dan Arsitektur EfficientNet-B0
DOI:
https://doi.org/10.30865/mib.v8i1.7276Keywords:
Classification, Mushroom, CNN, EfficientNet-B0, Digital Image ProcessingAbstract
Indonesia is a tropical country that has abundant natural resources and biodiversity, one of which is mushrooms. Mushrooms have various shapes and types. Some of them contain mushrooms that cannot be consumed because they contain toxins that will have an impact on human health. Mushroom species that can be consumed sometimes have a similar shape to mushrooms that cannot be consumed, causing cases of poisoning due to consuming the wrong mushrooms. This research focuses on detecting poisonous mushrooms using a Convolutional Neural Network (CNN) with the EfficientNet-B0 architecture. Mushroom data was obtained from Kaggle, and after praprocessing, the model was trained by varying the number of epochs and batch size. Based on the results of research and discussion on the detection of poisonous and non-toxic mushrooms, it is concluded that the CNN algorithm with the EfficientNet-B0 architecture can differentiate between poisonous and non-toxic mushrooms with a high level of accuracy. In scenario testing, the model trained using batch size 32 had an accuracy of 84.2% and loss of 0.39, precision of 0.855, recall of 0.805, and f1 score of 0.815. This shows that the CNN architecture EfficientNet-B0 is an efficient and accurate approach in classifying poisonous and non-poisonous mushrooms. Apart from that, this research also found that parameters such as the number of epochs and the number of batch sizes influence the model training process.
References
Frencis Matheos Sarimole and R. Ridad Diadi, “Klasifikasi Jenis Jamur Menggunakan Ekstraksi Fitur Glcm Dan K-Nearest Neighbor (KNN),†Jurnal Informatika Teknologi dan Sains, vol. 4, no. 3, pp. 286–290, Aug. 2022, doi: 10.51401/jinteks.v4i3.1996.
S. M. Siagian, H. Febriani, and M. A. Hutasuhut, “Macroscopic Fungi Exploration in Batang Gadis National Park Resort 7 Mandailing Natal District, North Sumatra,†Agrinula : Jurnal Agroteknologi dan Perkebunan, vol. 4, no. 2, pp. 139–151, Aug. 2021, doi: 10.36490/agri.v4i2.169.
M. R. Al Aziz, M. T. Furqon, and L. Muflikhah, “Klasifikasi Jamur Dapat Dimakan atau Beracun Menggunakan Naïve Bayes dan Seleksi Fitur berbasis Association Rule Mining,†Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, pp. 3948–3955, 2022.
S. Winiarti, C. Wukir, U. Ahdiani, and T. Ismail, “Klasifikasi Image Untuk Jenis Buku Bacaan Anak-Anak dengan Menggunakan Convolutional Neural Network,†Jurnal Media Informatika Budidarma, vol. 6, no. 2, p. 738, Apr. 2022, doi: 10.30865/mib.v6i2.3504.
R. Andre, B. Wahyu, and R. Purbaningtyas, “Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network Dengan Arsitektur Efficientnet-B3,†2021. [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index
N. H. Harani, C. Prianto, and M. Hasanah, “Deteksi Objek Dan Pengenalan Karakter Plat Nomor Kendaraan Indonesia Menggunakan Metode Convolutional Neural Network (CNN) Berbasis Python,†Jurnal Teknik Informatika, vol. 11, no. 3, pp. 47–53, 2019.
R. Yohannes and M. E. Al Rivan, “Klasifikasi Jenis Kanker Kulit Menggunakan CNN-SVM,†Jurnal Algoritme, vol. 2, no. 2, pp. 133–144, Apr. 2022, doi: 10.35957/algoritme.v2i2.2363.
N. Dewi and F. Ismawan, “Implementasi Deep Learning Menggunakan Cnn Untuk Sistem Pengenalan Wajah,†Faktor Exacta, vol. 14, no. 1, p. 34, Mar. 2021, doi: 10.30998/faktorexacta.v14i1.8989.
S. Alamgunawan and Y. Kristian, “Klasifikasi Tekstur Serat Kayu pada Citra Mikroskopik Veneer Memanfaatkan Deep Convolutional Neural Network,†Journal of Intelligent System and Computation, vol. 2, no. 1, pp. 06–11, Jul. 2021, doi: 10.52985/insyst.v2i1.152.
A. Susanto, Y. Kusumawati, E. Dhimas Niagara, and C. A. Sari, “Convolutional Neural Network Dalam Sistem Deteksi Helm Pada Pengendara Motor,†2 st Proceeding STEKOM, vol. 2022, 2022.
R. K. H. dan H. N. A. A. Mahran, “Penerapan Naive Bayes Gaussian Pada Klasifikasi Jenis Jamur Berdasarkan Ciri Statistik Orde Pertama,†Network Engineering Research Operation, vol. 5, pp. 91–99, 2020.
R. Hayami, Soni, and I. Gunawan, “Klasifikasi Jamur Menggunakan Algoritma Naïve Bayes,†Jurnal CoSciTech (Computer Science and Information Technology), vol. 3, no. 1, pp. 28–33, May 2022, doi: 10.37859/coscitech.v3i1.3685.
M. R. Al Aziz, M. T. Furqon, and L. Muflikhah, “Klasifikasi Jamur Dapat Dimakan atau Beracun Menggunakan Naïve Bayes dan Seleksi Fitur berbasis Association Rule Mining,†2022. [Online]. Available: http://j-ptiik.ub.ac.id
U. Sri Rahmadhani and N. Lysbetti Marpaung, “Klasifikasi Jamur Berdasarkan Genus Dengan Menggunakan Metode CNN,†Jurnal Informatika: Jurnal pengembangan IT (JPIT), vol. 8, no. 2, 2023.
I. Rafiedhia Pramutighna and A. Hermawan, “Pengenalan Potensi Racun dan Peningkatan Keamanan Pangan Dalam Jamur Menggunakan Convolutional Neural Network,†Jurnal Media Informatika Budidarma, vol. 7, pp. 1716–1726, 2023, doi: 10.30865/mib.v7i4.6372.
D. A. Anam, L. Novamizanti, and S. Rizal, “Klasifikasi Patologi Makula Pada Retina Berdasarkan Citra Retinal Oct Menggunakan Convolutional Neural Network,†2021.
D. Efendi, J. Jasril, S. Sanjaya, F. Syafria, and E. Budianita, “Penerapan Algoritma Convolutional Neural Network Arsitektur ResNet-50 untuk Klasifikasi Citra Daging Sapi dan Babi,†JURIKOM (Jurnal Riset Komputer), vol. 9, no. 3, p. 607, Jun. 2022, doi: 10.30865/jurikom.v9i3.4176.
M. Wibowo, M. Rizieq, and F. Djafar, “Perbandingan Metode Klasifikasi Untuk Deteksi Stress Pada Mahasiswa di Perguruan Tinggi,†JURNAL MEDIA INFORMATIKA BUDIDARMA, 2023, doi: 10.30865/mib.v7i1.5182.
A. I. Rizal and T. N. Suharsono, “Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Citra Jamur Berbasis Mobile,†Journal Of Social Science Research, vol. 3, pp. 864–875, 2023.
E. Iedfitra Haksoro and A. Setiawan, “Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network,†Online, 2021.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).