Classification of Company Level Based on Student Competencies in Tracer Study 2022 using SVM and XGBoost Method

 Tyo Revandi (Telkom University, Bandung, Indonesia)
 (*)Putu Harry Gunawan Mail (Telkom University, Bandung, Indonesia)

(*) Corresponding Author

Submitted: December 24, 2023; Published: January 10, 2024

Abstract

Assessing the quality level of companies where graduates are employed is crucial for understanding the impact of academic programs on career placements. The use of methodologies that do not match the research objectives may lead to inaccurate or irrelevant analysis. When company classification methods are not aligned with the nature of the data collected in a tracking study, the risk of misinterpretation and the formulation of invalid generalizations becomes apparent. This study utilizes the 2022 Tracer Study Data from Telkom University, encompassing responses from 4306 graduates working across Local, National, and Multinational companies. The research employs support vector machine (SVM) and XGBoost algorithms to analyze and classify the company levels of the surveyed graduates. The primary objective is to enhance the accuracy of company level classification, thereby facilitating a more precise analysis of the Tracer Study dataset. The SVM and XGBoost algorithms are rigorously tested, and the results indicate an accuracy improvement with the XGBoost method, yielding a 2% increase over the SVM method. The evaluation is conducted with a data separation of 20% test data and 80% training data. This research not only contributes to the refinement of company level classification in the context of Tracer Studies but also underscores the potential of machine learning algorithms, specifically SVM and XGBoost, in providing valuable insights into graduates' professional trajectories. The findings of this study pave the way for more informed decision-making processes in academic and career development initiatives.

Keywords


Classification; Company Level; Tracer Study; Support Vector Machine (SVM); XGBoost

Full Text:

PDF


Article Metrics

Abstract view : 238 times
PDF - 60 times

References

D. R. Nurcholis and R. F. Umbara, Analisis Hasil Tracer Study Terhadap Alumni Universitas Telkom dengan menggunakan Minimum Spanning Tree ( MST ), eProceedings, vol. 5, no. 3, pp. 80938104, 2018.

M. R. Takkas, R. F. Umbara, S. Si, M. Si, D. Indwiarti, and M. Si, Analisis Hasil Tracer Study Terhadap Alumni Universitas Telkom dengan Forest of All Minimum Spanning Trees ( MSTs ), vol. 6, no. 1, pp. 23802389, 2019.

Z. A. Adriani and I. Palupi, Prediction of University Student Performance Based on Tracer Study Dataset Using Artificial Neural Network, J. Komtika (Komputasi dan Inform., vol. 5, no. 2, pp. 7282, 2021.

M. Imron Rosadi and K. Kunci, Rancang Bangun Aplikasi Tracer Study Alumni Smk Negeri 1 Sukorejo Berbasis Android, J. Krisnadana, vol. 2, no. 1, pp. 277288, 2022.

I. Syarif, A. Prugel-Bennett, and G. Wills, SVM Parameter Optimization using Grid Search and Genetic Algorithm to Improve Classification Performance, TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 14, no. 4, p. 1502, 2016.

S. Huang, C. A. I. Nianguang, P. Penzuti Pacheco, S. Narandes, Y. Wang, and X. U. Wayne, Applications of support vector machine (SVM) learning in cancer genomics, Cancer Genomics and Proteomics, vol. 15, no. 1, pp. 4151, 2018.

D. A. Otchere, T. O. Arbi Ganat, R. Gholami, and S. Ridha, Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: Comparative analysis of ANN and SVM models, J. Pet. Sci. Eng., vol. 200, p. 108182, 2021.

A. R. Isnain, A. I. Sakti, D. Alita, and N. S. Marga, Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm, J. Data Min. dan Sist. Inf., vol. 2, no. 1, p. 31, 2021.

Z. Wan, Y. Dong, Z. Yu, H. Lv, and Z. Lv, Semi-Supervised Support Vector Machine for Digital Twins Based Brain Image Fusion, Front. Neurosci., vol. 15, no. July, pp. 112, 2021.

M. M. Muzakki and F. Nhita, The spreading prediction of Dengue Hemorrhagic Fever (DHF) in Bandung regency using K-means clustering and support vector machine algorithm, 2018 6th Int. Conf. Inf. Commun. Technol. ICoICT 2018, vol. 0, no. c, pp. 453458, 2018.

D. Helyudanto, F. Nhita, and A. Atiqi Rohamwati, Prediksi Penyebaran Demam Berdarah di Kabupaten Bandung dengan Metode Hybrid Autoregressive Integrated Moving Average ( ARIMA ) Support Vector Machine ( SVM ) Program Studi Sarjana Informatika Fakultas Informatika Universitas Telkom Bandung Prediksi Pen, 2019.

D. C. Toledo-Prez, J. Rodrguez-Resndiz, R. A. Gmez-Loenzo, and J. C. Jauregui-Correa, Support Vector Machine-based EMG signal classification techniques: A review, Appl. Sci., vol. 9, no. 20, 2019.

S. Pan, Z. Zheng, Z. Guo, and H. Luo, An optimized XGBoost method for predicting reservoir porosity using petrophysical logs, J. Pet. Sci. Eng., vol. 208, p. 109520, 2022.

E. Al Daoud, Comparison between XGBoost, LightGBM and CatBoost Using a Home Credit Dataset, Int. J. Comput. Inf. Eng., vol. 13, no. 1, pp. 610, 2019.

S. E. Herni Yulianti, Oni Soesanto, and Yuana Sukmawaty, Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit, J. Math. Theory Appl., vol. 4, no. 1, pp. 2126, 2022.

N. M. Rifki, F. Nhita, and A. R. Aniq, Prediksi Penyebaran Penyakit Demam Berdarah Dengue ( DBD ) di Kabupaten Bandung Menggunakan Algoritma XGBoost Program Studi Sarjana Informatika Fakultas Informatika Universitas Telkom Bandung, 2022.

K. Budholiya, S. K. Shrivastava, and V. Sharma, An optimized XGBoost based diagnostic system for effective prediction of heart disease, J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 7, pp. 45144523, 2022.

D. Normawati and S. A. Prayogi, Implementasi Nave Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter, J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697711, 2021.

D. Sharifrazi et al., Fusion of convolution neural network, support vector machine and Sobel filter for accurate detection of COVID-19 patients using X-ray images, Biomed. Signal Process. Control, vol. 68, no. March, p. 102622, 2021.

S. Sharma and K. Guleria, A Deep Learning based model for the Detection of Pneumonia from Chest X-Ray Images using VGG-16 and Neural Networks, Procedia Comput. Sci., vol. 218, pp. 357366, 2022.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Classification of Company Level Based on Student Competencies in Tracer Study 2022 using SVM and XGBoost Method

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.