Perbandingan Resident Set Size dan Virtual Memory Size Algoritma Machine Learning dalam Analisis Sentimen

 Reza Ardiansyah Yudhanegara (Politeknik Siber dan Sandi Negara, Bogor, Indonesia)
 (*)Nisrina Aliya Hana Mail (Politeknik Siber dan Sandi Negara, Bogor, Indonesia)
 Syahrizal Yonanda Mahfiridho (Politeknik Siber dan Sandi Negara, Bogor, Indonesia)
 Aqwam Rosadi Kardian (STMIK Jakarta STI&K, Jakarta Selatan, Indonesia)

(*) Corresponding Author

Submitted: December 22, 2023; Published: January 24, 2024


In the rapidly advancing era of digital transformation, where textual data abounds from various online sources such as social media, forums, and product reviews, sentiment analysis has become a critical component in understanding public opinions and consumer behavior. Sentiment analysis employs machine learning, natural language processing, and computational linguistics to comprehend the feelings and opinions of others. The machine learning algorithms investigated in this paper include K-Nearest Neighbor (K-NN), Support Vector Machine (SVM), Naive Bayes, ID3, and C4.5. The sentiment analysis process requires significant computational resources to handle the complexity and scale of data. This research aims to examine the differences in resource usage among these algorithms and determine which algorithm is best suited for sentiment analysis in this context. The research methodology employed is quantitative, focusing on the collection and numerical analysis of datasets. Testing is conducted using the Anaconda Library in the Python programming language to measure the usage of Resident Set Size (RSS), Virtual Memory Size (VMS), execution time, and the accuracy of each algorithm. The test results indicate that the Support Vector Machine (SVM) algorithm with an accuracy rate of 96% and the Naive Bayes algorithm with an accuracy rate of 97% are the best choices for use in the context of sentiment analysis. When considering the context of Resident Set Size (RSS) and Virtual Memory Size (VMS) usage in a single execution, ID3 is the algorithm with the smallest resource usage, with an accuracy rate of 92%. The average resources used by ID3 are 8.318.566,4 bytes for Resident Set Size (RSS) and 7.965.900,8 bytes for Virtual Memory Size (VMS) with an execution time of 2,619 seconds.


Sentiment Analysis; Machine Learning; Resident Set Size; Virtual Memory Size

Full Text:


Article Metrics

Abstract view : 166 times
PDF - 51 times


M. Du, X. Li, dan L. Luo, “A Training-Optimization-Based Method for Constructing Domain-Specific Sentiment Lexicon,” Complexity, vol. 2021, hlm. 1–11, Feb 2021, doi: 10.1155/2021/6152494.

K. Afifah, I. N. Yulita, dan I. Sarathan, “Sentiment Analysis on Telemedicine App Reviews using XGBoost Classifier,” dalam 2021 International Conference on Artificial Intelligence and Big Data Analytics, IEEE, Okt 2021, hlm. 22–27. doi: 10.1109/ICAIBDA53487.2021.9689735.

A. Htait, S. Fournier, P. Bellot, L. Azzopardi, dan G. Pasi, “Using Sentiment Analysis for Pseudo-Relevance Feedback in Social Book Search,” dalam Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval, New York, NY, USA: ACM, Sep 2020, hlm. 29–32. doi: 10.1145/3409256.3409847.

T. D. Pham dkk., “Natural language processing for analysis of student online sentiment in a postgraduate program,” Pacific Journal of Technology Enhanced Learning, vol. 2, no. 2, hlm. 15–30, Sep 2020, doi: 10.24135/pjtel.v2i2.4.

A. Htait, S. Fournier, dan P. Bellot, “Sentiment Analysis and Sentence Classification in Long Book-Search Queries,” 2023, hlm. 248–259. doi: 10.1007/978-3-031-24340-0_19.

H. Shirai, N. Inoue, J. Suzuki, dan K. Inui, “Annotating with Pros and Cons of Technologies in Computer Science Papers,” dalam Proceedings of the Workshop on Extracting Structured Knowledge from Scientific Publications, Stroudsburg, PA, USA: Association for Computational Linguistics, 2019, hlm. 37–42. doi: 10.18653/v1/W19-2605.

E. Tromp, M. Pechenizkiy, dan M. M. Gaber, “Expressive modeling for trusted big data analytics: techniques and applications in sentiment analysis,” Big Data Anal, vol. 2, no. 1, hlm. 1–28, Des 2017, doi: 10.1186/s41044-016-0018-9.

K. Machova, M. Mach, dan M. Vasilko, “Comparison of Machine Learning and Sentiment Analysis in Detection of Suspicious Online Reviewers on Different Type of Data,” Sensors, vol. 22, no. 1, hlm. 1–18, Des 2021, doi: 10.3390/s22010155.

V. Umarani, A. Julian, dan J. Deepa, “Sentiment Analysis using various Machine Learning and Deep Learning Techniques,” Journal of the Nigerian Society of Physical Sciences, hlm. 385–394, Nov 2021, doi: 10.46481/jnsps.2021.308.

M. R. A. Nasution dan M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” Jurnal Informatika, vol. 6, no. 2, hlm. 212–218, 2019, doi: 10.31294/ji.v6i2.5129.

F. S. Pattiiha dan H. Hendry, “Perbandingan Metode K-NN, Naïve Bayes, Decision Tree untuk Analisis Sentimen Tweet Twitter Terkait Opini Terhadap PT PAL Indonesia,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 2, hlm. 506–514, Apr 2022, doi: 10.30865/jurikom.v9i2.4016.

A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, dan W. Gata, “ANALISIS SENTIMEN APLIKASI RUANG GURU DI TWITTER MENGGUNAKAN ALGORITMA KLASIFIKASI,” Jurnal Teknoinfo, vol. 14, no. 2, hlm. 116–124, Jul 2020, doi: 10.33365/jti.v14i2.679.

U. Y. Ozkan dan T. Demirel, “The influence of window size on remote sensing-based prediction of forest structural variables,” Ecol Process, vol. 10, no. 1, hlm. 1–11, Sep 2021, doi: 10.1186/s13717-021-00330-4.

V. Christou dkk., “Evaluating the Window Size’s Role in Automatic EEG Epilepsy Detection,” Sensors, vol. 22, no. 23, hlm. 1–13, Nov 2022, doi: 10.3390/s22239233.

K. M. Awan, M. Waqar, M. Faseeh, F. Ullah, dan M. Q. Saleem, “Resource management and security issues in mobile phone operating systems: A comparative analysis,” PeerJ Prepr, vol. 5, hlm. 1–18, Okt 2017, doi: 10.7287/peerj.preprints.3344v1.

W. Jeon, J. Lee, D. Kang, H. Kal, dan W. W. Ro, “PIMCaffe: Functional Evaluation of a Machine Learning Framework for In-Memory Neural Processing Unit,” IEEE Access, vol. 9, hlm. 96629–96640, 2021, doi: 10.1109/ACCESS.2021.3094043.

S. Wang dkk., “Optimization Schemes for In-Memory Linear Regression Circuit With Memristor Arrays,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 12, hlm. 4900–4909, Des 2021, doi: 10.1109/TCSI.2021.3122327.

T. Nguyen dan A. J. McCaskey, “Extending Python for Quantum-classical Computing via Quantum Just-in-time Compilation,” ACM Transactions on Quantum Computing, vol. 3, no. 4, hlm. 1–25, Des 2022, doi: 10.1145/3544496.

W. Zhang, X. Chen, Y. Liu, dan Q. Xi, “A Distributed Storage and Computation k-Nearest Neighbor Algorithm Based Cloud-Edge Computing for Cyber-Physical-Social Systems,” IEEE Access, vol. 8, hlm. 50118–50130, 2020, doi: 10.1109/ACCESS.2020.2974764.

T. D. Novianto dan I. M. S. Erawan, “Perbandingan Metode Klasifikasi pada Pengolahan Citra Mata Ikan Tuna,” Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya), vol. 5, hlm. 216–223, Des 2020, doi: 10.20961/prosidingsnfa.v5i0.46615.

F. S. Al-Anzi dan D. AbuZeina, “Toward an enhanced Arabic text classification using cosine similarity and Latent Semantic Indexing,” Journal of King Saud University - Computer and Information Sciences, vol. 29, no. 2, hlm. 189–195, Apr 2017, doi: 10.1016/j.jksuci.2016.04.001.

R. Ferdiana, F. Jatmiko, D. D. Purwanti, A. Sekar, T. Ayu, dan W. F. Dicka, “Dataset Indonesia untuk Analisis Sentimen,” JNTETI, vol. 8, no. 4, hlm. 334–339, 2019.

V. H. Wong, W. L. Tan, J. L. Kor, dan X. V. Wan, “Autonomous Language Processing and Text Mining by Data Analytics for Business Solutions,” dalam Proceedings of the International Conference on Mathematical Sciences and Statistics 2022 (ICMSS 2022), Dordrecht: Atlantis Press International BV, 2023, hlm. 85–93. doi: 10.2991/978-94-6463-014-5_9.

M. B. Hamzah, “Classification of Movie Review Sentiment Analysis Using Chi-Square and Multinomial Naïve Bayes with Adaptive Boosting,” Journal of Advances in Information Systems and Technology, vol. 3, no. 1, hlm. 67–74, Apr 2021, doi: 10.15294/jaist.v3i1.49098.

A. Sabrani, I. G. W. Wedashwara W., dan F. Bimantoro, “Multinomial Naïve Bayes untuk Klasifikasi Artikel Online tentang Gempa di Indonesia,” Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA ), vol. 2, no. 1, hlm. 89–100, Mar 2020, doi: 10.29303/jtika.v2i1.87.

R. Hou, L. Wang, dan Y.-J. Wu, “Predicting ATP-Binding Cassette Transporters Using the Random Forest Method,” Front Genet, vol. 11, hlm. 1–11, Mar 2020, doi: 10.3389/fgene.2020.00156.

Q. Gao, “Design and Implementation of 3D Animation Data Processing Development Platform Based on Artificial Intelligence,” Comput Intell Neurosci, vol. 2022, hlm. 1–7, Mei 2022, doi: 10.1155/2022/1518331.

W. Han, “Quantitative Modelling of Climate Change Impact on Hydro-climatic Extremes,” Swansea University, Swansea, 2021. doi: 10.23889/SUthesis.58888.

R. H. A Alsagheer, A. F. H Alharan, dan A. S. A Al-Haboobi, “Popular Decision Tree Algorithms of Data Mining Techniques: A Review,” International Journal of Computer Science and Mobile Computing, vol. 6, no. 6, hlm. 133–142, 2017.

E. Erlin, Y. Desnelita, N. Nasution, L. Suryati, dan F. Zoromi, “Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan Data Tidak seimbang,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 3, hlm. 677–690, Jul 2022, doi: 10.30812/matrik.v21i3.1726.

H. Jeiad, Z. Ameen, dan A. Mahmood, “Employee Performance Assessment Using Modified Decision Tree,” Engineering and Technology Journal, vol. 36, no. 7A, hlm. 806–811, Jul 2018, doi: 10.30684/etj.36.7A.14.

R. Alshammari, “Arabic Text Categorization using Machine Learning Approaches,” International Journal of Advanced Computer Science and Applications, vol. 9, no. 3, hlm. 227–230, 2018, doi: 10.14569/IJACSA.2018.090332.

A. Suherman, D. KURNAEDI, S. Lusa, dan R. Darmawan, “Junior Class Preparedness Classification Faces A National Exam Using C.45 Algorithm with A Particle Swarm Optimization Approach,” bit-Tech, vol. 2, no. 3, hlm. 101–109, Nov 2020, doi: 10.32877/bt.v2i3.133.

R. Pambudi dan F. Madani, “Analysis of public opinion sentiment against COVID-19 in Indonesia on twitter using the k-nearest neighbor algorithm and decision tree,” Journal of Soft Computing Exploration, vol. 3, no. 2, hlm. 117–122, Sep 2022, doi: 10.52465/joscex.v3i2.88.

M. F. A. Saputra, T. Widiyaningtyas, dan A. P. Wibawa, “Illiteracy Classification Using K Means-Naïve Bayes Algorithm,” JOIV : International Journal on Informatics Visualization, vol. 2, no. 3, hlm. 153–158, Mei 2018, doi: 10.30630/joiv.2.3.129.

M. Hutzenthaler, A. Jentzen, dan von W. Wurstemberger, “Overcoming the curse of dimensionality in the approximative pricing of financial derivatives with default risks,” Electron J Probab, vol. 25, no. none, hlm. 1–73, Jan 2020, doi: 10.1214/20-EJP423.

S. Parhizkari, “Anomaly Detection in Intrusion Detection Systems,” 2023. doi: 10.5772/intechopen.112733.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Perbandingan Resident Set Size dan Virtual Memory Size Algoritma Machine Learning dalam Analisis Sentimen


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.