Perbandingan Efektivitas Naïve Bayes dan SVM dalam Menganalisis Sentimen Kebencanaan di Youtube
DOI:
https://doi.org/10.30865/mib.v8i1.7186Keywords:
Sentiment Analysis, Naive Bayes, Support Vector Machine, Youtube, DisasterAbstract
Advancements in the field of Natural Language Processing (NLP) have opened significant opportunities in sentiment analysis, particularly in the context of disaster response. In today's digital era, YouTube has emerged as a primary source for the public to acquire information regarding critical events. This study explores and compares two dominant sentiment analysis techniques, namely Naive Bayes and Support Vector Machine (SVM). It utilizes YouTube comment data related to natural disasters to test the effectiveness of these algorithms in identifying and classifying public sentiment as neutral, positive, or negative. The process involves collecting comment data, pre-processing the data, and applying Term-Frequency-Inverse Document Frequency (TF-IDF) weighting to prepare the data for analysis. Subsequently, the performance of both models is evaluated based on metrics such as accuracy, precision, recall, and F1 score. The results indicate that while both algorithms have their strengths and weaknesses, SVM tends to show better performance in sentiment classification, especially in terms of accuracy and precision, with an accuracy result of 92% and precision of 89% for negative predictions and 94% for positive predictions. On the other hand, Naive Bayes only achieved an accuracy of 79% and a precision of 91% for negative predictions and 73% for positive predictions. This study provides significant insights into the application of machine learning algorithms in sentiment analysis.
References
W. Maharani, “Sentiment Analysis during Jakarta Flood for Emergency Responses and Situational Awareness in Disaster Management using BERT,” 2020 8th Int. Conf. Inf. Commun. Technol. ICoICT 2020, 2020, doi: 10.1109/ICoICT49345.2020.9166407.
S. Z. Hassan, K. Ahmad, A. Al-Fuqaha, and N. Conci, “Sentiment analysis from images of natural disasters,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11752 LNCS, no. October, pp. 104–113, 2019, doi: 10.1007/978-3-030-30645-8_10.
S. S. L. Dang-xuan, “Social Media and Political Communication - A Social Media Analytics Social media and political communication : a social media analytics framework,” no. January, 2014, doi: 10.1007/s13278-012-0079-3.
A. Tripathy, A. Agrawal, and S. K. Rath, “Classification of Sentiment Reviews using N-gram Machine Learning Approach Classification of sentiment reviews using n-gram machine learning approach,” Expert Syst. Appl., vol. 57, no. March, pp. 117–126, 2016, doi: 10.1016/j.eswa.2016.03.028.
Herianto, “Penerapan Text-Mining Untuk Mengidentifikasi,” vol. VIII, no. 2, pp. 36–44, 2019.
B. Pranata and Susanti, “Support Vector Machine untuk Sentiment Analysis Bakal Calon Presiden Republik Indonesia 2024,” Indones. J. Comput. Sci., vol. 12, no. 3, pp. 1335–1349, 2023, doi: 10.33022/ijcs.v12i3.3231.
P. Aditiya, U. Enri, and I. Maulana, “Analisis Sentimen Ulasan Pengguna Aplikasi Myim3 Pada Situs Google Play Menggunakan Support Vector Machine,” vol. 9, no. 4, pp. 1020–1028, 2022, doi: 10.30865/jurikom.v9i4.4673.
C. Rahmawati and P. Sukmasetya, “Sentimen Analisis Opini Masyarakat Terhadap Kebijakan Kominfo atas Pemblokiran Situs non-PSE pada Media Sosial Twitter,” vol. 9, no. 5, pp. 1393–1400, 2022, doi: 10.30865/jurikom.v9i5.4950.
R. Rachman and R. N. Handayani, “Klasifikasi Algoritma Naive Bayes Dalam Memprediksi Tingkat Kelancaran Pembayaran Sewa Teras UMKM,” J. Inform., vol. 8, no. 2, pp. 111–122, 2021, doi: 10.31294/ji.v8i2.10494.
R. Johnson, “Effective Use of Word Order for Text Categorization with Convolutional Neural Networks,” pp. 103–112, 2015.
I. F. Yuliati, S. Wulandary, and P. R. Sihombing, “Penerapan Metode Support Vector Machine (SVM) dan Backpropagation Neural Network (BPNN) dalam Pengklasifikasian Pasangan Usia Subur di Jawa Barat,” J. Stat. dan Apl., vol. 4, no. 1, pp. 23–34, 2020.
R. Syahputra, G. J. Yanris, and D. Irmayani, “SVM and Naïve Bayes Algorithm Comparison for User Sentiment Analysis on Twitter,” vol. 7, no. 2, pp. 671–678, 2022.
M. A. Z. Larasati, N. A. S. Winarsih, M. S. Rohman, and G. W. Saraswati, “Penerapan Metode K-Means Clustering Dalam Menganalisis Sentimen Masyarakat Terhadap K-Popers Pada Twitter,” Progresif J. Ilm. Komput., vol. 18, no. 2, p. 201, 2022, doi: 10.35889/progresif.v18i2.877.
R. Singh and A. Tiwari, “Youtube Comments Sentiment Analysis,” Int. J. Sci. Res. Eng. Manag. (IJSREM, no. May, p. 5, 2021, [Online]. Available: https://www.researchgate.net/publication/351351202
M. Z. Asghar, S. Ahmad, A. Marwat, and F. M. Kundi, “Sentiment Analysis on YouTube: A Brief Survey,” no. September, 2015, [Online]. Available: http://arxiv.org/abs/1511.09142
D. T. Nguyen et al., “Robust Classification of Crisis-Related Data on Social Networks Using Convolutional Neural Networks,” no. Icwsm, pp. 632–635, 2017.
H. Henderi, “Preprocessing data untuk sistem peramalan tingkat kedisiplinan mahasiswa,” no. May, 2020, doi: 10.33050/icit.v3i2.70.
J. Nasional, S. Informasi, E. Yudi, and R. Wicaksana, “Analisis Sentimen Twitter untuk Menilai Opini Terhadap Perusahaan Publik Menggunakan Algoritma Deep Neural Network,” vol. 02, pp. 108–118, 2021.
J. Sayadi, L. Wikarsa, M. Comp, T. Suwanto, and S. Kom, “Search Engine Twitter Terhadap Isu Politik Menggunakan Metode TF-IDF dan Search Engine Twitter Terhadap Isu Politik Menggunakan Metode TF - IDF dan Vector Space Model,” no. August 2016, 2018.
D. P. Fajrina, N. Amalita, and A. Salma, “Sentiment Analysis of TikTok Application on Twitter using The Naïve Bayes Classifier Algorithm,” vol. 1, pp. 392–398, 2023.
M. R. Nurhusen, J. Indra, and K. A. Baihaqi, “Analisis Sentimen Pengguna Twitter Terhadap Kenaikan Harga Bahan Bakar Minyak ( BBM ) Menggunakan Metode Logistic Regression,” vol. 7, pp. 276–282, 2023, doi: 10.30865/mib.v7i1.5491.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).