Win Probability of Heroes in Mobile Legends MPL ID S12 Competitions Using Naïve Bayes Algorithm
DOI:
https://doi.org/10.30865/mib.v8i1.7185Keywords:
Classification, Hero, Mobile Legends Game, MPL, Naive BayesAbstract
The development of the gaming industry into digital formats has become a rapidly growing trend. E-Sports, particularly in Indonesia, has shown significant growth alongside technological advancements. The increased interest in E-Sports is evidenced by the higher quality tournaments organized by local game developers, such as Moonton, a subsidiary of ByteDance, hosting tournaments for Mobile Legends: Bang Bang. This article aims to analyze the probability of winning heroes in the Mobile Legends Professional League Season 12 using the Naive Bayes algorithm. The results of calculating the probabilities for various hero roles show varying levels of winning potential. By utilizing this method, it becomes possible to predict hero victories or losses more systematically, aiding players in developing more effective strategies during matches. The results obtained from predicting hero victories and losses indicate that for the jungler role, the win rate is 0.145 and the loss rate is 0.088. For midlaners, the victory rate reaches 0.492 and 0.661 for losses. As for roamers, the win rate is 0.120 and the loss rate is 0.102. For goldlaners and explaners, they achieve win rates of 0.528 and 0.177, respectively, while their loss rates are 0.339 and 0.132. Furthermore, after testing the data, the accuracy obtained for the roles is as follows: jungler role 67.61%, midlaner role 67.5%, roamer 67.65%, goldlaner 67.29%, and explaner 67.71%.
References
R. Rinaldi and I. Krisnadi, “Analisa Dampak Perkembangan Esports Terhadap Persaingan Operator Seluler Di Indonesia,” Progr. Stud. Magister Tek. Elektro, Fak. Tek. Univ. Mercubuana, no. 1, pp. 1–6, 2019.
A. Tatya Admaja and Y. A. Saputro, “Perkembangan E-Sport Pada Pelajar Remaja Usia 13-16 Tahun Pada Masa Pandemi Covid-19,” J. Phys. Heal. Recreat., vol. 2, no. 1, pp. 69–73, 2021.
D. C. Quartino and F. A. Irawan, “Analisis Perkembangan E-Sport Ditinjau Dari Revolusi Industri 4.0 di Kota Semarang Analysis of the Development of E-Sport reviewed From The Industrial Revolution 4.0 in the Semarang,” J. Literasi Olahraga, vol. 2, no. 3, pp. 169–173, 2022, [Online]. Available: https://journal.unsika.ac.id/index.php/JLO
A. Z. Rosyidi and Suparlan, “REGISTER BAHASA KOMENTATOR MOBILE LEGENDS DALAM TURNAMEN MPL SEASON 5,” J. Penelit. Dan Ilmu Pendidik., vol. 2, no. 2, pp. 174–182, 2021, doi: 10.51620/0869-2084-2021-66-8-465-471.
H. P. Jiwandono and E. R. Purwandi, “Liga Seluler: pergeseran olahraga elektronik ke peranti seluler di Indonesia.,” J. Media dan Komun. Indones., vol. 1, no. 1, p. 4, 2020, doi: 10.22146/jmki.51164.
W. F. A and Moch. F. N, “KOMUNIKASI, KOORDINASI, DAN KERJASAMA DALAM GAME KOMPETITIF MOBILE LEGEND,” J. Ilm. Indones., vol. 7, no. 5, pp. 5511–5525, 2022, [Online]. Available: https://jurnal.syntaxliterate.co.id/index.php/syntax-literate/article/view/7034/4379
D. Irwandi, R. Masykur, and S. Suherman, “Korelasi Kecanduan Mobile Legends Terhadap Prestasi Belajar Mahasiswa,” J. Lebesgue J. Ilm. Pendidik. Mat. Mat. dan Stat., vol. 2, no. 3, pp. 292–299, 2021, doi: 10.46306/lb.v2i3.87.
J. Mantik et al., “Sentimen Analisis Hero Mobile Legends Dengan Algoritma Naive Bayes,” J. Mantik, vol. 6, no. 3, pp. 2685–4236, 2022.
L. M. I. Fajri, Y. P, I. M. Z, W. T, and L. E. Rahmawati, “PERILAKU BERBAHASA YOUTUBER GAMING MOBILE LEGEND,” vol. 6, no. 1, pp. 86–94, 2022, [Online]. Available: https://jurnal.unigal.ac.id/literasi/article/view/6753/4832
A. Nasrullah and Sewaka, “Perancangan Sistem Informasi E-Sports Di Indonesia ( Khususnya Mobile Legends ) Berbasis Website Menggunakan Metode OOAD ( Object Oriented Analysis Design ),” J. Ilmu Komput. dan Sience, vol. 1, no. 5, p. 499, 2022.
R. Haditira et al., “Analisis Sentimen Pada Steam Review Menggunakan Metode Multinomial Naïve Bayes dengan Seleksi Fitur Gini Index Text,” e-Proceeding Eng., vol. 9, no. 3, pp. 1793–1799, 2022, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/17982
T. Astuti and Y. Astuti, “Analisis Sentimen Review Produk Skincare Dengan Naïve Bayes Classifier Berbasis Particle Swarm Optimization (PSO),” J. Media Inform. Budidarma, vol. 6, no. 4, p. 1806, 2022, doi: 10.30865/mib.v6i4.4119.
D. Kusnanda and A. Permana, “Implementation of Naive Bayes Classifier (NBC) for Sentiment Analysis on Twitter in Mobile Legends,” Int. J. Sci. Technol. Manag., vol. 4, no. 5, pp. 1132–1138, 2023.
A. S. Chan, F. Fachrizal, and A. R. Lubis, “Outcome Prediction Using Naïve Bayes Algorithm in the Selection of Role Hero Mobile Legend,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Jul. 2020, pp. 1–6. doi: 10.1088/1742-6596/1566/1/012041.
N. Rahma, “Hubungan Konformitas Teman Sebaya Dengan Intensitas Bermain Game Online Mobile Legends,” Psikoborneo J. Ilm. Psikol., vol. 10, no. 2, p. 281, 2022, doi: 10.30872/psikoborneo.v10i2.7385.
A. R. Dikananda, I. Ali, Fathurrohman, R. Ade Rinaldi, and Iin, “Genre e-sport gaming tournament classification using machine learning technique based on decision tree, Naïve Bayes, and random forest algorithm,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1088, no. 1, p. 012037, 2021, doi: 10.1088/1757-899x/1088/1/012037.
A. K. S. Ong et al., “Determination of Factors Influencing the Behavioral Intention to Play ‘Mobile Legends: Bang-Bang’ during the COVID-19 Pandemic: Integrating UTAUT2 and System Usability Scale for a Sustainable E-Sport Business,” Sustain., vol. 15, no. 4, pp. 1–26, 2023, doi: 10.3390/su15043170.
S. M. Listijo, T. Purwani, S. T. Galih, and T. Hafidzin, “Prediksi Kemenangan Dan Susunan Tim Pada Game Mobile Legends Bang Bang Menggunakan Algoritma Naïve Bayes,” Komputaki , vol. 6, no. 1, pp. 15–17, 2020.
K. Akhmedov and A. H. Phan, “Machine learning models for DOTA 2 outcomes prediction,” pp. 1–11, 2021, [Online]. Available: http://arxiv.org/abs/2106.01782
N. Salmi and Z. Rustam, “Naïve Bayes Classifier Models for Predicting the Colon Cancer,” IOP Conf. Ser. Mater. Sci. Eng., vol. 546, no. 5, 2019, doi: 10.1088/1757-899X/546/5/052068.
K. Khadijah, N. Sabilly, and F. A. Nugroho, “Sentiment Analysis of League of Legends: Wild Rift Reviews on Google Play Using Naã Ve Bayes Classifier,” J. Ilm. Kursor, vol. 12, no. 1, pp. 23–30, 2023, [Online]. Available: http://kursorjournal.org/index.php/kursor/article/view/328%0Ahttp://kursorjournal.org/index.php/kursor/article/download/328/147
R. Ardianto, T. Rivanie, Y. Alkhalifi, F. S. Nugraha, and W. Gata, “Sentiment Analysis on E-Sports for Education Curriculum Using Naive Bayes and Support Vector Machine,” J. Ilmu Komput. dan Inf., vol. 13, no. 2, pp. 109–122, 2020, doi: 10.21609/jiki.v13i2.885.
M. K. Mayangsari, I. Syarif, and A. Barakbah, “Evaluation of Stratified K-Fold Cross Validation for Predicting Bug Severity in Game Review Classification,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, pp. 277–288, 2023, doi: 10.22219/kinetik.v8i3.1740.
N. Asmiati and Fatmawati, “Penerapan Algoritma Naive Bayes Untuk Mengklasifikasi Pengaruh Negatif Game Online Bagi Remaja Milenial,” JTIM J. Teknol. Inf. dan Multimed., vol. 2, no. 3, pp. 141–149, 2020, doi: 10.35746/jtim.v2i3.102.
A. P. Wibawa et al., “Naïve Bayes Classifier for Journal Quartile Classification,” Int. J. Recent Contrib. from Eng. Sci. IT, vol. 7, no. 2, p. 91, 2019, doi: 10.3991/ijes.v7i2.10659.
M. F. Sarifah, “Naive bayes algorithm performance for smartphone sentiment analysis in social media,” Int. J. Artif. Intell. Informatics, vol. 2, no. 2, pp. 98–107, 2022, doi: 10.33292/ijarlit.v2i2.41.
V. Jackins, S. Vimal, M. Kaliappan, and M. Y. Lee, “AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes,” J. Supercomput., vol. 77, no. 5, pp. 5198–5219, 2021, doi: 10.1007/s11227-020-03481-x.
M. Alehegn, R. R. Joshi, and P. Mulay, “Diabetes analysis and prediction using random forest, KNN, Naïve Bayes, and J48: An ensemble approach,” Int. J. Sci. Technol. Res., vol. 8, no. 9, pp. 1346–1354, 2019.
K. Lemons, “A Comparison Between Naïve Bayes and Random Forest to Predict Breast Cancer IJURCA : International Journal of Undergraduate Research & Creative Activities A Comparison Between Naïve Bayes and Random Forest to Predict,” vol. 12, no. 1, 2023.
M. Guia, R. R. Silva, and J. Bernardino, “Comparison of Naive Bayes, support vector machine, decision trees and random forest on sentiment analysis,” IC3K 2019 - Proc. 11th Int. Jt. Conf. Knowl. Discov. Knowl. Eng. Knowl. Manag., vol. 1, no. Ic3k, pp. 525–531, 2019, doi: 10.5220/0008364105250531.
N. T. M. Hazmiza, “Classifying Violent Elements in Role-Playing Games Based on User Review using Naïve Bayes Technique,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 1.3, pp. 402–407, 2020, doi: 10.30534/ijatcse/2020/6391.32020.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).