Pengembangan Chatbot Kesehatan Mental Menggunakan Algoritma Long Short-Term Memory
DOI:
https://doi.org/10.30865/mib.v8i1.7177Keywords:
Mental Health, Chatbot, AI Project Cycle, Long Short-Term Memory, FlaskAbstract
Mental health has now become a crucial aspect of contemporary society, especially in Indonesia. This reflects the emotional, psychological, and social well-being of individuals, encompassing the ability to cope with stress in daily life. A comprehensive understanding of mental health has become highly important for the community to prevent the occurrence of mental health problems or disorders. The objective of this research is to design a chatbot as an information and solution hub for maintaining mental health, with the hope that the development of this chatbot can help reduce the risk of mental health-related issues. In the development process of this chatbot, the author applies the AI Project Cycle and utilizes a deep learning approach for the chatbot model. The development involves the Flask platform, and to achieve high accuracy, the model employs the Long Short-Term Memory (LSTM) architecture—a type of recurrent neural network (RNN) specifically designed to handle long-term dependency issues common in complex mental health contexts. LSTM enables the model to store and access long-term contextual information, which can be highly beneficial in providing accurate solutions and understanding emotional condition changes. The trained LSTM model demonstrates an accuracy of 93%, validation accuracy of 82%, a loss of 0.3%, and validation loss of 1.6% after 200 epochs. Therefore, it can be concluded that using the LSTM algorithm for the chatbot model in this development is quite effective.
References
R. Hardianti, F. Annis Nauli, F. Keperawatan Universitas Riau Jalan Pattimura No, dan G. G. Pekanbaru Riau, “HUBUNGAN ANTARA RASA SYUKUR TERHADAP KESEHATAN MENTAL REMAJA DI SMA NEGERI 8 PEKANBARU,” 2021.
I. A. Ridlo, D. Administrasi, K. Kesehatan, K. Masyarakat, dan U. Airlangga, “Pandemi COVID-19 dan Tantangan Kebijakan Kesehatan Mental di Indonesia” 2020, doi: 10.20473/jpkm.v5i12020.155-164.
Y. A. Rozali dkk., “MENINGKATKAN KESEHATAN MENTAL DI MASA PANDEMIC,” 2021.
S. B. Grace, A. G. K. Tandra, dan M. Mary, “Komunikasi Efektif dalam Meningkatkan Literasi Kesehatan Mental,” Jurnal Komunikasi, vol. 12, no. 2, hlm. 191, Okt 2020, doi: 10.24912/jk.v12i2.5948.
A. Rosmalina dan T. Khaerunnisa, “Penggunaan Media Sosial dalam Kesehatan Mental Remaja,” Prophetic: Professional, Empathy and Islamic Counseling Journal, vol. 4, no. 1, hlm. 49–58, 2021, [Daring]. Tersedia pada: http://syekhnurjati.ac.id/jurnal/index.php/prophetic
J. Hurwitz dan D. Kirsch, Machine Learning IBM Limited Edition. 2018. [Daring]. Tersedia pada: http://www.wiley.com/go/permissions.
M. Dhyani dan R. Kumar, “An intelligent Chatbot using deep learning with Bidirectional RNN and attention model,” dalam Materials Today: Proceedings, Elsevier Ltd, 2019, hlm. 817–824. doi: 10.1016/j.matpr.2020.05.450.
E. Larasati Amalia dan D. Wahyu Wibowo, “Rancang Bangun Chatbot Untuk Meningkatkan Performa Bisnis,” Jurnal Ilmiah Teknologi Informasi Asia, vol. 13, no. 2, 2019.
A. Elcholiqi dan A. Musdholifah, “Chatbot in Bahasa Indonesia using NLP to Provide Banking Information,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 14, no. 1, hlm. 91, Jan 2020, doi: 10.22146/ijccs.41289.
E. Adamopoulou dan L. Moussiades, “An Overview of Chatbot Technology,” dalam IFIP Advances in Information and Communication Technology, Springer, 2020, hlm. 373–383. doi: 10.1007/978-3-030-49186-4_31.
Y. Astari dan S. Wahib Rozaqi, “Analisis Sentimen Multi-Class pada Sosial Media menggunakan metode Long Short-Term Memory (LSTM),” 2021.
M. A. Amrustian, W. Widayat, dan A. M. Wirawan, “Analisis Sentimen Evaluasi Terhadap Pengajaran Dosen di Perguruan Tinggi Menggunakan Metode LSTM,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, hlm. 535, Jan 2022, doi: 10.30865/mib.v6i1.3527.
H. Jelodar, Y. Wang, R. Orji, dan H. Huang, “Deep Sentiment Classification and Topic Discovery on Novel Coronavirus or COVID-19 Online Discussions: NLP Using LSTM Recurrent Neural Network Approach,” Apr 2020, [Daring]. Tersedia pada: http://arxiv.org/abs/2004.11695
H. Anbiyani, F. Muhyidin, dan L. Venica, “Jurnal Informatika dan Rekayasa Perangkat Lunak Pengembangan Chatbot untuk Meningkatkan Pengetahuan dan Kesadaran Keamanan Siber Menggunakan Long Short-Term Memory,” vol. 5, no. 2, hlm. 152–161, 2023.
A. Silvanie dan R. Subekti, “APLIKASI CHATBOT UNTUK FAQ AKADEMIK DI IBI-K57 DENGAN LSTM DAN PENYEMATAN KATA,” Jurnal Informatika dan Komputer) Akreditasi KEMENRISTEKDIKTI, vol. 5, no. 1, 2022, doi: 10.33387/jiko.
A. Prasetyo dan T. Ridwan, “ANALISIS SENTIMEN TERHADAP PEMBERHENTIAN TV ANALOG PADA TWITTER MENGGUNAKAN ALGORITMA NAIVE BAYES,” vol. 15, no. 2, 2023, doi: 10.30736/jt.v15i2.991.
K. A. Nugraha dan D. Sebastian, “Chatbot Layanan Akademik Menggunakan K-Nearest Neighbor,” Jurnal Sains dan Informatika, vol. 7, no. 1, hlm. 11–19, Mar 2021, doi: 10.34128/jsi.v7i1.285.
Y. D. Prabowo, H. L. H. S. Warnars, W. Budiharto, A. I. Kistijantoro, Y. Heryadi, dan Lukas, “Lstm and Simple Rnn Comparison in the Problem of Sequence to Sequence on Conversation Data Using Bahasa Indonesia,” dalam 1st 2018 Indonesian Association for Pattern Recognition International Conference, INAPR 2018 - Proceedings, Institute of Electrical and Electronics Engineers Inc., Jul 2019, hlm. 51–56. doi: 10.1109/INAPR.2018.8627029.
D. Alita dan A. Rahman, “Pendeteksian Sarkasme pada Proses Analisis Sentimen Menggunakan Random Forest Classifier,” 2020.
D. Aby Vonega, A. Fadila, dan D. Ely Kurniawan, “Analisis Sentimen Twitter Terhadap Opini Publik Atas Isu Pencalonan Puan Maharani dalam PILPRES 2024,” 2022. [Daring]. Tersedia pada: http://jurnal.polibatam.ac.id/index.php/JAIC
D. Alita dan A. Rahman, “Pendeteksian Sarkasme pada Proses Analisis Sentimen Menggunakan Random Forest Classifier,” 2020.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).