Analisis Topic-Modelling Menggunakan Latent Dirichlet Allocation (LDA) Pada Ulasan Sosial Media Youtube
Abstract
Keywords
Full Text:
PDFReferences
M. Sinurat, R. N. Ilham, and W. Cahyadi, “Strategic for Increasing Economic Value Added in the MSME Sector in the North Sumatra Region with the Acceleration Board Method and Initial Public Offering,” in Proceedings of the International Conference on Strategic Issues of Economics, Business and, Education (ICoSIEBE 2020), 2021. doi: 10.2991/aebmr.k.210220.019.
Raden Ariansyah Kamil, “Research on MSMEs in Indonesia : Bibliometric Analysis,” Int J Sci Res Sci Technol, pp. 171–178, Sep. 2022, doi: 10.32628/IJSRST229527.
Agni Arifah et al., “Strengthening Business Management and Simple Accounting Understanding for the Rengginang Simanalagi UMKM in Jambuluwuk Village, Ciawi District,” Jurnal Pengabdian Masyarakat Formosa, vol. 1, no. 5, pp. 557–566, Dec. 2022, doi: 10.55927/jpmf.v1i5.2158.
S. Tinggi, I. Dakwah, and K. Islam, “KOMUNIKASI DAKWAH MELALUI MEDIA PEMBELAJARAN YOUTUBE Helnafri Ankesa,” TABAYYUN: Jurnal Komunikasi dan Penyiaran Islam, vol. 3, no. 2, p. 10, 2022, [Online]. Available: https://ejournal-stidkibogor.ac.id/index.php/tabayyun
R. Kurniawan, F. Lestari, A. S. Batubara, M. Z. A. Nazri, K. Rajab, and R. Munir, “Indonesian Lexicon-Based Sentiment Analysis of Online Religious Lectures Review,” in 2021 International Congress of Advanced Technology and Engineering (ICOTEN), IEEE, Jul. 2021, pp. 1–5. doi: 10.1109/ICOTEN52080.2021.9493530.
A. Adak, B. Pradhan, N. Shukla, and A. Alamri, “Unboxing Deep Learning Model of Food Delivery Service Reviews Using Explainable Artificial Intelligence (XAI) Technique,” Foods, vol. 11, no. 14, p. 2019, Jul. 2022, doi: 10.3390/foods11142019.
I. K. Susanto, “Analisis Sentimen dan Topic Modelling Pada Pembelajaran Online di Indonesia Melalui Twitter,” JOINTECS (Journal of Information Technology and Computer Science), vol. 6, no. 2, p. 85, May 2021, doi: 10.31328/jointecs.v6i2.2350.
Della Maulidiya, “Topic Modelling using Latent Dirichlet Allocation (LDA) to Investigate the Latent Topics of Mathematical Creative Thinking Research in Indonesia,” J. Intell. Comput. Health Inform., vol. 3, no. 2, pp. 34–35, 2022, doi: 10.26714/jichi.v3i2.11428.
A. Andy and U. Andy, “Understanding Communication in an Online Cancer Forum: Content Analysis Study,” JMIR Cancer, vol. 7, no. 3, p. e29555, Sep. 2021, doi: 10.2196/29555.
M. Rüdiger, D. Antons, A. M. Joshi, and T.-O. Salge, “Topic modeling revisited: New evidence on algorithm performance and quality metrics,” PLoS One, vol. 17, no. 4, p. e0266325, Apr. 2022, doi: 10.1371/journal.pone.0266325.
K. Amaradiena and T. Widarmanti, “SEIKO : Journal of Management & Business LDA-Topic Modeling: Menggunakan Ulasan Pengguna Untuk Meningkatkan User Experience (Studi pada PeduliLindungi),” SEIKO : Journal of Management & Business, vol. 6, no. 1, pp. 943–953, 2023, doi: 10.37531/sejaman.v6i1.3802.
N. L. P. M. Putu, Ahmad Zuli Amrullah, and Ismarmiaty, “Analisis Sentimen dan Pemodelan Topik Pariwisata Lombok Menggunakan Algoritma Naive Bayes dan Latent Dirichlet Allocation,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 123–131, Feb. 2021, doi: 10.29207/resti.v5i1.2587.
D. Z. T. Kannitha, M. Mustafid, and P. Kartikasari, “PEMODELAN TOPIK PADA KELUHAN PELANGGAN MENGGUNAKAN ALGORITMA LATENT DIRICHLET ALLOCATION DALAM MEDIA SOSIAL TWITTER,” Jurnal Gaussian, vol. 11, no. 2, pp. 266–277, Aug. 2022, doi: 10.14710/j.gauss.v11i2.35474.
M. K H, H. Zainuddin, and Y. Wabula, “Twitter Social Media Conversion Topic Trending Analysis Using Latent Dirichlet Allocation Algorithm,” Journal of Applied Engineering and Technological Science (JAETS), vol. 4, no. 1, pp. 390–399, Dec. 2022, doi: 10.37385/jaets.v4i1.1143.
M. Habibi, A. Priadana, A. B. Saputra, and P. W. Cahyo, “Topic Modelling of Germas Related Content on Instagram Using Latent Dirichlet Allocation (LDA),” in Proceedings of the International Conference on Health and Medical Sciences (AHMS 2020), Paris, France: Atlantis Press, 2021. doi: 10.2991/ahsr.k.210127.060.
A. R. Lubis, S. Prayudani, M. Lubis, and O. Nugroho, “Sentiment Analysis on Online Learning During the Covid-19 Pandemic Based on Opinions on Twitter using KNN Method,” in 2022 1st International Conference on Information System & Information Technology (ICISIT), IEEE, Jul. 2022, pp. 106–111. doi: 10.1109/ICISIT54091.2022.9872926.
M. S. Alrajak, I. Ernawati, I. N. Fakultas, and I. Komputer, ANALISIS SENTIMEN TERHADAP PELAYANAN PT PLN DI JAKARTA PADA TWITTER DENGAN ALGORITMA K-NEAREST NEIGHBOR (K-NN). 2020.
W. Wiranto and Mila Rosyida Uswatunnisa, “Topic Modeling for Support Ticket using Latent Dirichlet Allocation,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 6, pp. 998–1005, Dec. 2022, doi: 10.29207/resti.v6i6.4542.
A. D. Cahyani and T. Mardiana, “SENTIMENT ANALYSIS OF DIGITAL WALLET SERVICE USERS USING NAÏVE BAYES CLASSIFIER AND PARTICLE SWARM OPTIMIZATION,” Jurnal Riset Informatika, vol. 2, no. 4, pp. 241–250, Sep. 2020, doi: 10.34288/jri.v2i4.160.
I. Uglanova and E. Gius, “The Order of Things. A Study on Topic Modelling of Literary Texts,” 2020. [Online]. Available: http://ceur-ws.org
S. Mifrah, “Topic Modeling Coherence: A Comparative Study between LDA and NMF Models using COVID’19 Corpus,” International Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 4, pp. 5756–5761, Aug. 2020, doi: 10.30534/ijatcse/2020/231942020.
DOI: https://doi.org/10.30865/mib.v8i1.7127
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.