Analisa Algoritma K-Means Untuk Menentukan Strategi Marketing
DOI:
https://doi.org/10.30865/mib.v8i1.7085Keywords:
K-Means, Clustering, Iteration, Marketing, Data MiningAbstract
This research explored the application of the K-Means algorithm in the marketing field to increase the effectiveness of ABC Cosmetic Store marketing strategies. Sales data can be processed using data mining to be used as decision making at ABC Cosmetic Stores. One of the techniques in data mining is Clustering, which is used to categorize data. The K Means algorithm is used to identify hidden patterns in the data. By using bodylotion sales data, this research aims to classify consumers into several groups. The data group in question is sales data that is of great interest to consumers and data that is of little interest to consumers. The results of clustering using k=2 show that cluster 1 consists of 5 products with product transactions sold being 1295 products. In this case, it shows that cluster 1 is a group of product data whose quantity sold has increased and can provide profits at the ABC Cosmetic Store. Meanwhile, cluster 2 has 1 data with 214 product transactions sold and is grouped as data with products that are less popular with consumers so there is no need to increase the stock available in the warehouse by ABC Cosmetic Shop. The results of this research show that K Means-based customer segmentation can increase personalization in marketing communications and increase the efficiency of marketing resource allocation. This study provides new insights into how data mining techniques can be involved in marketing strategies to determine product availability for the future.
References
S. Nurajizah and A. Salbinda, “Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Pada Toko Fashion Hijab Banten,” Jurnal Teknik Komputer AMIK BSI, vol. 7, no. 2, 2021, doi: 10.31294/jtk.v4i2.
H. E. Simanjuntak and W. Windarto, “Analisa Data Mining Menggunakan Frequent Pattern Growth pada Data Transaksi Penjualan PT Mora Telematika Indonesia untuk Rekomendasi Strategi Pemasaran Produk Internet,” Jurnal Media Informatika Budidarma, vol. 4, no. 4, 2020.
A. H. Ardiansyah, W. Nugroho, N. H. Alfiyah, R. A. Handoko, M. Arfan Bakhtiar, “Penerapan Data Mining Menggunakan Metode Clustering untuk Menentukan Status Provinsi di Indonesia” 2020
M. P. Tambunan, “Penerapan Data Mining Dalam Analisa Data Pemakaian Obat Dengan Menerapkan Algoritma K-Means,” Jurnal Informasi dan Teknologi Ilmiah (INTI), vol. 8, no. 3, 2021.
I. Virgo, S. Defit, and Y. Yuhandri, “Klasterisasi Tingkat Kehadiran Dosen Menggunakan Algoritma K-Means Clustering,” Jurnal Sistim Informasi dan Teknologi, pp. 23–28, Mar. 2020, doi: 10.37034/jsisfotek.v2i1.17.
D. Anggarwati, O. Nurdiawan, I. Ali, and D. A. Kurnia, “Penerapan Algoritma K-Means Dalam Prediksi Penjualan Karoseri,” vol. 1, no. 2, pp. 58–62, 2021.
C. Zai and T. Komputer, “IMPLEMENTASI DATA MINING SEBAGAI PENGOLAHAN DATA,” Jurnal Portal Data, vol. 2, no. 3, 2022.
D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 2, p. 437, Apr. 2020, doi: 10.30865/mib.v4i2.2080.
D. Ramdhan, G. Dwilestari, R. Danar Dana, and A. Ajiz, “Clustering Data Persediaan Barang dengan Menggunakan Metode K-Means,” Jurnal Media Informasi Analisa dan Sistem, vol. 7, no. 1, 2022.
N. S. Pakpahan, “Implementasi Data Mining Menggunakan Algoritma J48 Dalam Menentukan Pola Itemset Belanja Pembeli (Study Kasus: Swalayan Brastagi Medan),” Journal of Computing and Informatics Research, vol. 1, no. 1, 2021.
N. Ema, T. Ningsih, A. M. H. Pardede, and S. Syahputra, “DATA MINING DALAM PENGELOMPOKKAN JUMLAH DATA PRODUKTIVITAS TANAMAN PANGAN MENGGUNAKAN METODE CLUSTRING K-MEANS ( STUDI KASUS : BADAN PUSAT STATISTIK KOTA BINJAI),” Jurnal Sistem Informasi Kaputama (JSIK), vol. 6, no. 2, 2022.
A. A. Lubis, R. Buaton, and I. Ambarita, “Data Mining Pengelompokan Pasien Rawat Inap Berdasarkan Kelas Bpjs Menggunakan Metode Clustering (Studi Kasus : Rumah Sakit Umum Daerah Dr. Rm. Djoelham Binjai),” Jurnal Sistem Informasi Kaputama (JSIK), vol. 6, no. 2, 2022.
A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,” vol. 15, no. 2, 2021.
M. Nurdayat, N. Suarna, and Y. A. Wijaya, “Analisa Clustering untuk Mengelompokan Data Penayangan Film Bioskop Menggunakan Algoritma K-Means,” INTERNAL (Information System Journal, vol. 6, no. 1, pp. 68–78, 2023, doi: 10.32627.
B. Juliartha Martin Putra, D. Ariani Finda Yuniarti, P. Pemeliharaan Komputer dan Jaringan, and A. Komunitas Negeri Pacitan Abstrak, “ANALISIS HASIL BELAJAR MAHASISWA DENGAN CLUSTERING MENGGUNAKAN METODE K-MEANS,” Jurnal POROS TEKNIK, vol. 12, no. 2, pp. 49–58, 2020.
R. R. Putra and C. Wadisman, “Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K Means,” INTECOMS: Journal of Information Technology and Computer Science, vol. 1, no. 1, pp. 72–77, Mar. 2018, doi: 10.31539/intecoms.v1i1.141.
D. P. Hidayatullah, R. I. Rokhmawati, and A. R. Perdanakusuma, “Analisis Pemetaan Pelanggan Potensial Menggunakan Algoritma K-Means dan LRFM Model Untuk Mendukung Strategi Pengelolaan Pelanggan (Studi Pada Maninjau Center Kota Malang),” vol. 2, no. 8, 2018.
Y. Puspita Sari et al., “Implementasi Algoritma K-Means untuk Clustering Penyebaran Tuberkulosis di Kabupaten Karawang,” vol. 5, no. 2, p. 2020.
A. Rohmah et al., “IMPLEMENTASI ALGORITMA K-MEANS CLUSTERING ANALYSIS UNTUK MENENTUKAN HAMBATAN PEMBELAJARAN DARING (STUDI KASUS: SMK YASPIM GEGERBITUNG),” 2021.
R. Wulan Sari and D. Hartama, Data Mining: Algoritma K-Means Pada Pengelompokkan Wisata Asing ke Indonesia Menurut Provinsi. Seminar Nasional Sains & Teknologi Informasi (SENSASI), 2018.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).