Prediksi Retensi Pengguna Baru Shopee Menggunakan Machine Learning
Abstract
Keywords
Full Text:
PDFReferences
Databoks, “Pertumbuhan Pengunjung Shopee sampai Kuartal II 2022,†Databoks. [Online]. Available: https://databoks.katadata.co.id/datapublish/2022/11/21/tokopedia-masih-ungguli-shopee-sampai-kuartal-ii-2022
B. Prabadevi, R. Shalini, and B. R. Kavitha, “Customer churning analysis using machine learning algorithms,†Int. J. Intell. Networks, vol. 4, no. September 2022, pp. 145–154, 2023, doi: 10.1016/j.ijin.2023.05.005.
A. N. Rachmi, “Implementasi Metode Random Forest Dan Xgboost Pada Klasifikasi Customer Churn,†pp. 1–101, 2020, [Online]. Available: https://dspace.uii.ac.id/handle/123456789/30082
N. Suryana, Pratiwi, and R. Tri Prasetio, “Penanganan Ketidakseimbangan Data pada Prediksi Customer Churn Menggunakan Kombinasi SMOTE dan Boosting,†IJCIT (Indonesian J. Comput. Inf. Technol., vol. 6, no. 1, pp. 31–37, 2021, [Online]. Available: https://creativecommons.org/licenses/by-sa/4.0/
P. P. Singh, F. I. Anik, R. Senapati, A. Sinha, N. Sakib, and E. Hossain, “Investigating customer churn in banking: A machine learning approach and visualization app for data science and management,†Data Sci. Manag., 2023, doi: 10.1016/j.dsm.2023.09.002.
X. Li and Z. Li, “A hybrid prediction model for e-commerce customer churn based on logistic regression and extreme gradient boosting algorithm,†Ing. des Syst. d’Information, vol. 24, no. 5, pp. 525–530, 2019, doi: 10.18280/isi.240510.
M. Kiguchi, W. Saeed, and I. Medi, “Churn prediction in digital game-based learning using data mining techniques: Logistic regression, decision tree, and random forest,†Appl. Soft Comput., vol. 118, p. 108491, 2022, doi: 10.1016/j.asoc.2022.108491.
S. M. Shrestha and A. Shakya, “A Customer Churn Prediction Model using XGBoost for the Telecommunication Industry in Nepal,†Procedia Comput. Sci., vol. 215, pp. 652–661, 2022, doi: 10.1016/j.procs.2022.12.067.
S. Baghla and G. Gupta, “Performance Evaluation of Various Classification Techniques for Customer Churn Prediction in E-commerce,†Microprocess. Microsyst., vol. 94, no. September, p. 104680, 2022, doi: 10.1016/j.micpro.2022.104680.
J. Mantik and L. Qadrini, “Handling Unbalanced Data With Smote Adaboost,†J. Mantik, vol. 6, no. 2, pp. 2332–2336, 2022.
J. Pamina et al., “An effective classifier for predicting churn in telecommunication,†J. Adv. Res. Dyn. Control Syst., vol. 11, no. 1 Special Issue, pp. 221–229, 2019.
I. Hanif, “Implementing Extreme Gradient Boosting (XGBoost) Classifier to Improve Customer Churn Prediction,†2020, doi: 10.4108/eai.2-8-2019.2290338.
I. M. Syahrani, “Comparation Analysis of Ensemble Technique With Boosting(Xgboost) and Bagging (Randomforest) For Classify Splice Junction DNA Sequence Category,†J. Penelit. Pos dan Inform., vol. 9, no. 1, pp. 27–36, 2019, doi: 10.17933/jppi.v9i1.249.
S. F. Sabbeh, “Machine-learning techniques for customer retention: A comparative study,†Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 2, pp. 273–281, 2018, doi: 10.14569/IJACSA.2018.090238.
Kaggle, “Kaggle.†[Online]. Available: https://www.kaggle.com/datasets/danielbeltsazar/shopee-new-user-behavior?select=sample_data_DStest.csv
Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling Technique,†J. Artif. Intell. Res., vol. 30, no. 2, pp. 321–357, 2002.
H. Hairani, K. E. Saputro, and S. Fadli, “K-means-SMOTE for handling class imbalance in the classification of diabetes with C4.5, SVM, and naive Bayes,†J. Teknol. dan Sist. Komput., vol. 8, no. 2, pp. 89–93, 2020, doi: 10.14710/jtsiskom.8.2.2020.89-93.
Y. A. Sir and A. H. H. Soepranoto, “Pendekatan Resampling Data Untuk Menangani Masalah Ketidakseimbangan Kelas,†J. Komput. dan Inform., vol. 10, no. 1, pp. 31–38, 2022, doi: 10.35508/jicon.v10i1.6554.
M. Libnao, M. Misula, C. Andres, J. Mariñas, and J. Mariñas, “ScienceDirect Procedia ScienceDirect Traffic incident prediction and classification system using naïve Traffic incident prediction and algorithm classification system using naïve bayes bayes algorithm,†Procedia Comput. Sci., vol. 227, pp. 316–325, 2023, doi: 10.1016/j.procs.2023.10.530.
Z. Jin, J. Shang, Q. Zhu, C. Ling, W. Xie, and B. Qiang, “RFRSF: Employee Turnover Prediction Based on Random Forests and Survival Analysis,†Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12343 LNCS, pp. 503–515, 2020, doi: 10.1007/978-3-030-62008-0_35.
J. G. C. Krüger, A. de S. Britto, and J. P. Barddal, “An explainable machine learning approach for student dropout prediction,†Expert Syst. Appl., vol. 233, no. June, p. 120933, 2023, doi: 10.1016/j.eswa.2023.120933.
D. Vora and K. Iyer, “Evaluating the Effectiveness of Machine Learning Algorithms in Predictive Modelling,†Int. J. Eng. Technol., vol. 7, no. 3.4, p. 197, 2018, doi: 10.14419/ijet.v7i3.4.16773.
S. K. Wagh, A. A. Andhale, K. S. Wagh, J. R. Pansare, S. P. Ambadekar, and S. H. Gawande, “Customer Churn Prediction in Telecom Sector using Machine Learning Techniques,†Results Control Optim., vol. 14, no. October 2023, p. 100342, 2023, doi: 10.1016/j.rico.2023.100342.
DOI: https://doi.org/10.30865/mib.v8i1.7074
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.