Sistem Deteksi Anomali Pada Transformator Menggunakan Dissolved Gas Analysis Dengan Metode K-Nearest Neighbour
DOI:
https://doi.org/10.30865/mib.v8i1.7034Keywords:
Transformer, Dissolved Gas Analysis (DGA), Transformer Oil, Classification, K-Nearest Neighbour (KNN)Abstract
The transformer is the most important part of the electric power system, therefore maintenance needs to be carried out to prevent the emergence of anomalies in the transformer. Dissolved Gas Analysis (DGA) is a method for detecting anomalies in transformers. DGA is used to test the condition of the insulating oil in transformers by taking samples of the insulating oil. If an anomalous event occurs in a transformer, the resulting gas concentration will vary depending on the type of anomalous event in the transformer. The main problem underlying this research is the inability of previously existing anomaly detection systems to provide an optimal level of accuracy, traditional methods or approaches used also face obstacles in interpreting complex data from dissolved gas analysis. The aim of the research carried out is to be able to design an anomaly detection system on Transformers using DGA and to see the level of accuracy of the existing DGA method using KNN. In this research, the anomaly detection system on the transformer resulted in the highest level of accuracy being 94% using the key gas method and the lowest level of accuracy being 79% using the Doernenburg Ratio method. The conclusion of this research is that it is able to create a system that can make it easier to analyze anomalies in transformers, and can be used as an alternative method for determining the condition of transformers.References
E. Permata and I. Lestari, “MAINTENANCE PREVENTIVE PADA TRANSFORMATOR STEP-DOWN AV05 DENGAN KAPASITAS 150KV DI PT. KRAKATAU DAYA LISTRIK,” Prosiding Seminar Nasional Pendidikan FKIP Universitas Sultan Ageng Tirtayasa, vol. 3, no. 1, pp. 485–493, 2020.
M. Anzar Amrullah, Haripuddin, and Firdaus, “STUDI PEMELIHARAAN TRANSFORMATOR DAYA DI PLN UPT MAKASSAR,” Jurnal MEDIA ELEKTRIK, vol. 20, no. 1, pp. 67–72, 2022, doi: https://doi.org/10.59562/metrik.v20i1.36714.
N. M. Seniari, F. Citarsa, and A. Ningsih, “Korelasi Antara Sifat Listrik Dengan Sifat Fisika Dan Sifat Kimia Dari Minyak Transformator,” Dielektrika, vol. 8, no. 2, pp. 118–125, 2021.
R. Anni, “Analisis Keadaan Minyak Transformator Menggunakan Metode Logika Fuzzy Berdasarkan Kadar Gas Terlarut,” Jurnal Pendidikan Tambusai, vol. 6, no. 2, pp. 16200–16207, 2022.
M. Tohari, B. Sukoco, and M. Haddin, “Analisis Kondisi Transformator Daya 20kv/150kv Dengan Metode Uji Dissolved Gas Analysis (DGA) Di PT.PJB PLTU Rembang,” KONFERENSI ILMIAH MAHASISWA UNISSULA (KIMU) 4, pp. 337–344, 2020.
M. Misto and H. Haryono, “Analisis Gas Terlarut pada Minyak Isolasi sebagai Indikator Kegagalan Transformator Daya dengan Metode Dissolved Gas Analysis,” Jurnal Teknik Elektro dan Komputasi (ELKOM), vol. 1, no. 2, pp. 99–112, Dec. 2019, doi: 10.32528/elkom.v1i2.3091.
A. Yulinda, M. Taqiyyudin A, and B. M. Basuki, “Analisis Kegagalan Trafo Berdasarkan Hasil Pengujian Dissolved Gas Analysis Pada Trafo I 50 Mva 150/20kv Gi Pier,” Science Electro, vol. 10, no. 1, pp. 64–69, 2019.
S. Ariyani, “Analisis Dissolved Gas Analysis Dan Klasifikasi Tipe Fault Pada Minyak Trafo Dengan Metode Naive Bayes Classifier Pada Transformator Daya 150 kV,” 2019. doi: 10.32528/elkom.v1i1.2181.
E. Alimudin, A. Sumardiono, and N. B. Nugraha, “Expert System for Predictive Maintenance Transformer using J48 Algorithm,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, vol. 8, no. 1, pp. 445–452, Feb. 2023, doi: 10.22219/kinetik.v8i1.1587.
Y. Benmahamed, Y. Kemari, M. Teguar, and A. Boubakeur, “Diagnosis of Power Transformer Oil Using KNN and Naïve Bayes Classifiers,” 2018, [Online]. Available: https://www.researchgate.net/publication/327837626
I. M. Sismantara, W. Ariastina, and A. Amrita, “Penentuan Kondisi Transformator Berdasarkan Kandungan Gas Terlarut Menggunakan Metode Segitiga Duval,” Spektrum, vol. 8, no. 1, p. 107, 2021, doi: 10.24843/SPEKTRUM.2021.v08.i01.p12.
S. Ramadani, N. Z. S. Ayu, N. Nurhayati, F. Azzahra, and A. P. Windarto, “Analisis Data Mining Naive Bayes Klasifikasi Pada Kelayakan Penerima PKH,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 4, no. 1, pp. 374–381, 2020, doi: 10.30865/komik.v4i1.2725.
W. Wahyono, I. N. P. Trisna, S. L. Sariwening, M. Fajar, and D. Wijayanto, “Perbandingan penghitungan jarak pada k-nearest neighbour dalam klasifikasi data tekstual,” Jurnal Teknologi dan Sistem Komputer, vol. 8, no. 1, pp. 54–58, Jan. 2020, doi: 10.14710/jtsiskom.8.1.2020.54-58.
N. Fithri and J. R. Auliya, “Analisis Kegagalan Isolasi Minyak Transformator 27 Mva Pltg 1 Jakabaring Berdasarkan Hasil Uji Dissolved Gas Analysis (DGA),” Jurnal Ilmiah TEKNO, vol. 15, no. 1, pp. 23–33, 2018.
Y. E. Feriyanto, “Analisa Dissolved Gas Analysis (DGA) di minyak trafo, Best Practice Experience in Power Plant.” Accessed: Oct. 17, 2023. [Online]. Available: www.caesarvery.com
A. Syakur and W. Lazuardi, “Penerapan Metode Interpretasi Rasio Roger, Segitiga Duval, Breakdown Test, dan Water Content Test untuk Diagnosis Kelayakan Minyak Transformator,” TEKNIK, vol. 40, no. 1, pp. 63–68, 2019, doi: 10.14710/teknik.v40n1.22056.
MA. Senoussaoui, IS. Bousmaha, MN. Brahami, and M. Brahami, “Comparative study of DGA interpretation methods,” 4th International Conference On Electrical Engineering, p. 354, 2019, [Online]. Available: https://www.researchgate.net/publication/331578768
S. Shidiq, A. Sujatmiko, and A. H. Paronda, “Pengujian Dissolved Gas Analysis (DGA) Pada Trafo Tenaga 150/20kv 60mva Di Gardu Induk Tambun,” JREC Journal of Electrical and Electronics, vol. 7, no. 1, pp. 43–52, 2019.
I. Widhi Saputro and B. Wulan Sari, “Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa,” Citec Journal, vol. 6, no. 1, pp. 1–11, 2019, doi: 10.24076/citec.2019v6i1.178.
F. Istighfarizky, N. A. E. Sanjaya, I. M. Widiartha, L. G. Astuti, I. G. N. A. C. Putra, and I. K. G. Suhartana, “Klasifikasi Jurnal menggunakan Metode KNN dengan Mengimplementasikan Perbandingan Seleksi Fitur,” Jurnal Elektronik Ilmu Komputer Udayana, vol. 11, no. 1, pp. 167–176, 2022, [Online]. Available: https://scholar.google.com
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).