Ensemble Klasifikasi Penyakit Tuberculosis Pada Hasil Pengobatan Menggunakan Metode Hybrid K-Nearest Neighbor (K-NN), Decision Tree dan Support Vector Machine (SVM)
DOI:
https://doi.org/10.30865/mib.v8i1.7021Keywords:
Treatment Results, K-Nearest Neighbor, Decision Tree, Support Vector Machine, Tuberculosis, EnsembleAbstract
Tuberculosis (TB) is an infectious disease with the highest cause of death in the world. This disease can be transmitted through the air and attacks the pulmonary respiratory system. The increase in TB cases from year to year is due to little information about the treatment of this disease. This requires the process of diagnosing and treating TB requiring accurate data analysis. From these problems, classification of tuberculosis disease is needed to improve better treatment results. In this study, experiments were used with the Hybrid model classification algorithm with a method that combines three approaches, namely K-Nearest Neighbor (K-NN), Decision Tree, Support Vector Machine (SVM) to classify treatment results using the Ensemble classification method and aims to combine each method in order to create a stronger Ensemble model and increase accuracy in treatment results, using data from the Semarang City Health Service or what is called Tuberculosis Information System (SITB) data in 2020-2023 with 80% training data and test data 20%. Based on the results of testing and analysis using the confusion matrix, the highest accuracy value was obtained at 78.55% using K-Fold Cross validation, namely k equals 7 and the Ensemble model obtained high results for treatment outcomes.References
Lina Yunita, Rasi Rahagia, Fauziah H. Tambuala, A. Suyatni Musrah, Andi Asliana Sainal, and Suprapto, “Efektif Pengetahuan dan Sikap Masyarakat Dalam Upaya Pencegahan Tuberkulosis: Effective Knowledge and Community Attitudes in Tuberculosis Prevention Efforts,†J. Health JoH, vol. 10, no. 2, pp. 186–193, Jul. 2023, doi: 10.30590/joh.v10n2.619.
K. Tilwani, A. Patel, M. Patel, P. Sojitra, and G. Dave, “Asiaticoside A for the modulation of 1-TbAd- a potential target and ligand for extensive drug resistance Mycobacterium tuberculosis,†AMB Express, vol. 13, no. 1, p. 111, Oct. 2023, doi: 10.1186/s13568-023-01616-w.
K. Mar’iyah and Z. Zulkarnain, “Patofisiologi penyakit infeksi tuberkulosis,†Pros. Semin. Nas. Biol., vol. 7, no. 1, Art. no. 1, Nov. 2021, doi: 10.24252/psb.v7i1.23169.
V. C. Osamor and A. F. Okezie, “Enhancing the weighted voting ensemble algorithm for tuberculosis predictive diagnosis,†Sci. Rep., vol. 11, no. 1, p. 14806, Jul. 2021, doi: 10.1038/s41598-021-94347-6.
O. Hrizi et al., “Tuberculosis Disease Diagnosis Based on an Optimized Machine Learning Model,†J. Healthc. Eng., vol. 2022, pp. 1–13, Mar. 2022, doi: 10.1155/2022/8950243.
C. Prasitpuriprecha et al., “Drug-Resistant Tuberculosis Treatment Recommendation, and Multi-Class Tuberculosis Detection and Classification Using Ensemble Deep Learning-Based System,†Pharmaceuticals, vol. 16, no. 1, p. 13, Dec. 2022, doi: 10.3390/ph16010013.
W. Xing and Y. Bei, “Medical Health Big Data Classification Based on KNN Classification Algorithm,†IEEE Access, vol. 8, pp. 28808–28819, 2020, doi: 10.1109/ACCESS.2019.2955754.
L. M. Ferreira, T. Sáfadi, and J. L. Ferreira, “K-mer applied in Mycobacterium tuberculosis genome cluster analysis,†Braz. J. Biol., vol. 84, p. e258258, 2024, doi: 10.1590/1519-6984.258258.
M. A. Elashmawy, I. Elamvazuthi, L. I. Izhar, S. Paramasivam, and S. Su, “Detection of Tuberculosis Based on Hybridized Pre-Processing Deep Learning Method,†Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 8, 2023, doi: 10.14569/IJACSA.2023.0140808.
R. Kadry and O. Ismael, “A New Hybrid KNN Classification Approach based on Particle Swarm Optimization,†Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 11, 2020, doi: 10.14569/IJACSA.2020.0111137.
R. Ruswanto, M. Mardhiah, R. Mardianingrum, and K. Novitriani, “SINTESIS DAN STUDI IN SILICO SENYAWA 3-NITRO-N’-[(PYRIDIN-4-YL) CARBONYL]BENZOHYDRAZIDE SEBAGAI KANDIDAT ANTITUBERKULOSIS,†Chim. Nat. Acta, vol. 3, no. 2, Aug. 2015, doi: 10.24198/cna.v3.n2.9183.
A. H. Husen, A. S. Nur Afiah, S. Soesanti, and F. Tempola, “Deteksi Dini Resiko Tuberkulosis di Kota Ternate: Pelacakan dan Implementasi Algoritma Klasifikasi,†J. CoSciTech Comput. Sci. Inf. Technol., vol. 3, no. 2, pp. 217–225, Aug. 2022, doi: 10.37859/coscitech.v3i2.3986.
V. M. Santi, L. Nafisah, and Q. Meidianingsih, “Penerapan Metode SMOTE CHAID dalam Klasifikasi Tuberkulosis Relapse,†J. Stat. Dan Apl., vol. 6, no. 1, pp. 26–36, Jun. 2022, doi: 10.21009/JSA.06103.
Yanti Apriyani, I. D. I. Iskandar, Mira Kusmira, Melisa Winda Pertiwi, Imam Amirulloh, and Taufik Wibisono, “Implementasi Sistem Pakar dengan Algortima Naïve Bayes dengan Laplace Correction untuk Diagnosis Tuberkulosis Paru,†Inf. J. Inform. Dan Sist. Inf., vol. 13, no. 1, pp. 24–46, May 2021, doi: 10.37424/informasi.v13i1.72.
Y.-D. Zhang, W. Wang, X. Zhang, and S.-H. Wang, “Secondary Pulmonary Tuberculosis Recognition by 4-Direction Varying-Distance GLCM and Fuzzy SVM,†Mob. Netw. Appl., Feb. 2022, doi: 10.1007/s11036-021-01901-7.
A. Kumar, A. Verma, G. Shinde, Y. Sukhdeve, and N. Lal, “Crime Prediction Using K-Nearest Neighboring Algorithm,†in 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India: IEEE, Feb. 2020, pp. 1–4. doi: 10.1109/ic-ETITE47903.2020.155.
M. Park et al., “Distinguishing nontuberculous mycobacterial lung disease and Mycobacterium tuberculosis lung disease on X-ray images using deep transfer learning,†BMC Infect. Dis., vol. 23, no. 1, p. 32, Jan. 2023, doi: 10.1186/s12879-023-07996-5.
S. C. Gupta and N. Goel, “Enhancement of Performance of K-Nearest Neighbors Classifiers for the Prediction of Diabetes Using Feature Selection Method,†in 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India: IEEE, Oct. 2020, pp. 681–686. doi: 10.1109/ICCCA49541.2020.9250887.
B. Charbuty and A. Abdulazeez, “Classification Based on Decision Tree Algorithm for Machine Learning,†J. Appl. Sci. Technol. Trends, vol. 2, no. 01, pp. 20–28, Mar. 2021, doi: 10.38094/jastt20165.
S. Rajaraman, F. Yang, G. Zamzmi, Z. Xue, and S. K. Antani, “A Systematic Evaluation of Ensemble Learning Methods for Fine-Grained Semantic Segmentation of Tuberculosis-Consistent Lesions in Chest Radiographs,†Bioengineering, vol. 9, no. 9, p. 413, Aug. 2022, doi: 10.3390/bioengineering9090413.
A. Mahajan et al., “A Novel Stacking-Based Deterministic Ensemble Model for Infectious Disease Prediction,†Mathematics, vol. 10, no. 10, p. 1714, May 2022, doi: 10.3390/math10101714.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).