Komparasi Teknik Feature Selection Dalam Klasifikasi Serangan IoT Menggunakan Algoritma Decision Tree

 (*)Dicky Setiawan Mail (Universitas Dian Nuswantoro, Semarang, Indonesia)
 Adhitya Nugraha (Universitas Dian Nuswantoro, Semarang, Indonesia)
 Ardytha Luthfiarta (Universitas Dian Nuswantoro, Semarang, Indonesia)

(*) Corresponding Author

Submitted: November 11, 2023; Published: January 9, 2024

Abstract

Presence of Internet of Things (IoT) has revolutionized how we interact with the world on our daily life by enabling various devices to connect the internet and transmit data. However, the increasingly widespread use of IoT technology also brings serious threats to cyber security and increases the number of IoT attacks. The need for robust classification models is becoming increasingly clear to anticipate these problems. This research focuses on developing an IoT attack classification model by comparing feature selection techniques that utilize data from the CIC IoT Dataset 2023. This research faces challenges such as data imbalance and the complexity of handling various features. To overcome these challenges, this research uses random undersampling techniques to balance the data and utilizes various feature selection methods, including filter based, wrapper based, and embedded based. Apart from that, this research also tries to use a decision tree algorithm. The findings reveal that the application of wrapper based techniques as feature selection together with a decision tree algorithm produces the highest accuracy of 87.32% in classifying IoT attack types. This emphasizes that the use of techniques and algorithms that are still rarely used can provide fairly good accuracy results.

Keywords


Internet of Things (IoT); IoT Attack; Imbalance Data; Feature Selection; Classification; Decision Tree

Full Text:

PDF


Article Metrics

Abstract view : 258 times
PDF - 99 times

References

E. Erwin dkk., PENGANTAR & PENERAPAN INTERNET OF THINGS: Konsep dasar & Penerapan IoT di berbagai Sektor. PT. Sonpedia Publishing Indonesia, 2023.

H. Mantik, Revolusi Industri 4.0: Internet of Things, Implementasi Pada Berbagai Sektor Berbasis Teknologi Informasi (Bagian 1), JSI (Jurnal sistem Informasi) Universitas Suryadarma, hlm. 4148, 2022, doi: https://doi.org/10.35968/jsi.v9i2.919.

B. Ramadhan, D. Firdaus, dan A. R. Rafi, Teknik SMOTE Sebagai Solusi Imbalance Class dalam Model Deteksi Intrusi DDoS dengan Metode PCA-Random Forest, Journal MIND Journal, vol. 8, no. 1, hlm. 5264, 2023, doi: 10.26760/mindjournal.v8i1.52-64.

M. S. Gitakarma dan L. P. A. S. Tjahyanti, Peranan Internet of Things dan Kecerdasan Buatan dalam Teknologi Saat Ini, Jurnal Komputer dan Teknologi Sains (KOMTEKS), vol. 1, no. 1, hlm. 18, 2022.

W. Najib, T. Ancaman dan Solusi Keamanan, S. Sulistyo, dan K. Kunci, Tinjauan Ancaman dan Solusi Keamanan pada Teknologi Internet of Things (Review on Security Threat and Solution of Internet of Things Technology), Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 9, no. 1, 2020.

R. R. Krishna, A. Priyadarshini, A. V. Jha, B. Appasani, A. Srinivasulu, dan N. Bizon, State-of-the-Art Review on IoT Threats and Attacks: Taxonomy, Challenges and Solutions, Sustainability (Switzerland), vol. 13, no. 16, Agu 2021, doi: 10.3390/su13169463.

A. Sandriana dan F. Maulana, Klasifikasi serangan Malware terhadap Lalu Lintas Jaringan Internet of Things menggunakan Algoritma K-Nearest Neighbour (K-NN), E-JOINT (Electronica and Electrical Journal of Innovation Technology) , vol. 03, no. 1, 2022.

P. R. Sihombing dan I. F. Yuliati, Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia, MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 20, no. 2, hlm. 417426, Mei 2021, doi: 10.30812/matrik.v20i2.1174.

A. Roihan, P. A. Sunarya, dan A. S. Rafika, Pemanfaatan Machine Learning dalam Berbagai Bidang: Review Paper, IJCIT (Indonesian Journal on Computer and Information Technology), vol. 5, no. 1, hlm. 7582, 2019.

S. M. Tahsien, H. Karimipour, dan P. Spachos, Machine learning based solutions for security of Internet of Things (IoT): A survey, Journal of Network and Computer Applications, vol. 161, hlm. 102630, 2020, doi: https://doi.org/10.1016/j.jnca.2020.102630.

E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, dan A. A. Ghorbani, CICIoT2023: A Real-Time Dataset and Benchmark for Large-Scale Attacks in IoT Environment, Sensors, vol. 23, no. 13, Jul 2023, doi: 10.3390/s23135941.

H. Polat, O. Polat, dan A. Cetin, Detecting DDoS attacks in software-defined networks through feature selection methods and machine learning models, Sustainability (Switzerland), vol. 12, no. 3, Feb 2020, doi: 10.3390/su12031035.

K. Kurniabudi, A. Harris, dan E. Rosanda, Optimalisasi Seleksi Fitur Untuk Deteksi Serangan Pada IoT Menggunakan Classifier Subset Evaluator, JURIKOM (Jurnal Riset Komputer), vol. 9, no. 4, hlm. 885, Agu 2022, doi: 10.30865/jurikom.v9i4.4618.

J. Nicholas Sibarani, D. Ronaldo Sirait, dan dan Salma Safira Ramadhanti, Intrusion Detection Systems pada Bot-IoT Dataset Menggunakan Algoritma Machine Learning, Jurnal Masyarakat Informatika, vol. 14, no. 1, hlm. 38-52, 2023.

C. Zai, IMPLEMENTASI DATA MINING SEBAGAI PENGOLAHAN DATA, JURNAL PORTAL DATA, vol. 2, no. 3, 2022.

L. Qadrini, H. Hikmah, dan M. Megasari, Oversampling, Undersampling, Smote SVM dan Random Forest pada Klasifikasi Penerima Bidikmisi Sejawa Timur Tahun 2017, Journal of Computer System and Informatics (JoSYC), vol. 3, no. 4, hlm. 386391, Sep 2022, doi: 10.47065/josyc.v3i4.2154.

M. Sulistiyono, Y. Pristyanto, S. Adi, dan G. Gumelar, Implementasi Algoritma Synthetic Minority Over-Sampling Technique untuk Menangani Ketidakseimbangan Kelas pada Dataset Klasifikasi, SISTEMASI: Jurnal Sistem Informasi, vol. 10, no. 2, hlm. 445-459, 2021.

R. Siringoringo, KLASIFIKASI DATA TIDAK SEIMBANG MENGGUNAKAN ALGORITMA SMOTE DAN k-NEAREST NEIGHBOR, Journal Information System Development (ISD), vol. 3, no. 1, hlm. 44-49, 2018.

B. Venkatesh dan J. Anuradha, A review of Feature Selection and its methods, Cybernetics and Information Technologies, vol. 19, no. 1, hlm. 326, 2019, doi: 10.2478/CAIT-2019-0001.

R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, dan J. Saeed, A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction, Journal of Applied Science and Technology Trends, vol. 1, no. 2, hlm. 5670, Mei 2020, doi: 10.38094/jastt1224.

A. Wenda, Support Vector Machine untuk Pengenalan Bentuk Manusia Menggunakan Kumpulan Fitur yang Dioptimalkan, Jurnal Sains dan Teknologi, vol. 11, hlm. 7784, 2022, doi: 10.23887/jst-undiksha.v11i1.

W. Lian, G. Nie, B. Jia, D. Shi, Q. Fan, dan Y. Liang, An intrusion detection method based on decision tree-recursive feature elimination in ensemble learning, Mathematical Problems in Engineering, vol.2020, 2020, doi: 10.1155/2020/2835023.

B. Charbuty dan A. Abdulazeez, Classification Based on Decision Tree Algorithm for Machine Learning, Journal of Applied Science and Technology Trends, vol. 2, no. 01, hlm. 2028, Mar 2021, doi: 10.38094/jastt20165.

H. Zhou, J. Zhang, Y. Zhou, X. Guo, dan Y. Ma, A feature selection algorithm of decision tree based on feature weight, Expert Syst Appl, vol. 164, hlm. 113842, 2021, doi: https://doi.org/10.1016/j.eswa.2020.113842.

A. Rahman, Klasifikasi Performa Akademik Siswa Menggunakan Metode Decision Tree dan Naive Bayes, Jurnal SAINTEKOM, vol. 13, no. 1, hlm. 2231, Mar 2023, doi: 10.33020/saintekom.v13i1.349.

A. Saputra, KAJIAN EMPIRIS METODE POHON KEPUTUSAN ROTATION FOREST, 2018.

D. P. Sinambela, H. Naparin, M. Zulfadhilah, dan N. Hidayah, Implementasi Algoritma Decision Tree dan Random Forest dalam Prediksi Perdarahan Pascasalin, Jurnal Informasi dan Teknologi, vol. 5, no. 3, hlm. 5864, Sep 2023, doi: 10.60083/jidt.v5i3.393.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Komparasi Teknik Feature Selection Dalam Klasifikasi Serangan IoT Menggunakan Algoritma Decision Tree

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.