Medical Image Classification of Brain Tumors using Convolutional Neural Network Algorithm
Abstract
Keywords
Full Text:
PDFReferences
S. Angeli, K. E. Emblem, P. Due-Tonnessen, dan T. Stylianopoulos, “Towards patient-specific modeling of brain tumor growth and formation of secondary nodes guided by DTI-MRI,” NeuroImage Clin., vol. 20, no. August, hal. 664–673, 2018, doi: 10.1016/j.nicl.2018.08.032.
F. Shi dkk., “Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for COVID-19,” IEEE Rev. Biomed. Eng., vol. 14, hal. 4–15, 2021, doi: 10.1109/RBME.2020.2987975.
S. Das, O. F. M. R. R. Aranya, dan N. N. Labiba, “Brain Tumor Classification Using Convolutional Neural Network,” 1st Int. Conf. Adv. Sci. Eng. Robot. Technol. 2019, ICASERT 2019, no. May 2019, hal. 1–6, 2019, doi: 10.1109/ICASERT.2019.8934603.
M. Takahashi dkk., “Eribulin penetrates brain tumor tissue and prolongs survival of mice harboring intracerebral glioblastoma xenografts,” Cancer Sci., vol. 110, no. 7, hal. 2247–2257, 2019, doi: 10.1111/cas.14067.
K. D. Miller dan Q. T. Ostrom, “Brain and Other Central Nervous System Tumor Statistics ,” vol. 71, no. 5, hal. 381–406, 2021, doi: 10.3322/caac.21693.
R. Mulyadi, A. A. Islam, B. Murtala, J. Tammase, M. Hatta, dan M. Firdaus, “Diagnostic yield of the combined magnetic resonance imaging and magnetic resonance spectroscopy to predict malignant brain tumor,” Bali Med. J., vol. 9, no. 1, hal. 239–245, 2020, doi: 10.15562/bmj.v9i1.1486.
A. Rayan dkk., “Utilizing CNN-LSTM techniques for the enhancement of medical systems,” Alexandria Eng. J., vol. 72, hal. 323–338, 2023, doi: 10.1016/j.aej.2023.04.009.
S. Sunardi, A. Yudhana, dan A. R. WindraPutri, “Mass Classification of Breast Cancer Using CNN and Faster R-CNN Model Comparison,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, 2022, doi: 10.22219/kinetik.v7i3.1462.
M. A. Hasan, Y. Riyanto, dan D. Riana, “Grape leaf image disease classification using CNN-VGG16 model,” J. Teknol. dan Sist. Komput., vol. 9, no. 4, hal. 218–223, 2021, doi: 10.14710/jtsiskom.2021.14013.
M. R. Ismael dan I. Abdel-Qader, “Brain Tumor Classification via Statistical Features and Back-Propagation Neural Network,” IEEE Int. Conf. Electro Inf. Technol., vol. 2018-May, hal. 252–257, 2018, doi: 10.1109/EIT.2018.8500308.
A. Pashaei, H. Sajedi, dan N. Jazayeri, “Brain tumor classification via convolutional neural network and extreme learning machines,” 2018 8th Int. Conf. Comput. Knowl. Eng. ICCKE 2018, no. Iccke, hal. 314–319, 2018, doi: 10.1109/ICCKE.2018.8566571.
C. Szegedy dkk., “Going Deeper with Convolutions,” 2014.
Y. Xie dkk., “Convolutional Neural Network Techniques for Brain Tumor Classification (from 2015 to 2022): Review, Challenges, and Future Perspectives,” Diagnostics, vol. 12, no. 8, 2022, doi: 10.3390/diagnostics12081850.
X. Zhao, Y. Wu, G. Song, Z. Li, Y. Zhang, dan Y. Fan, “A deep learning model integrating FCNNs and CRFs for brain tumor segmentation,” Med. Image Anal., vol. 43, hal. 98–111, 2018, doi: 10.1016/j.media.2017.10.002.
D. O. Enoma, J. Bishung, T. Abiodun, O. Ogunlana, dan V. C. Osamor, “Machine learning approaches to genome-wide association studies,” J. King Saud Univ. - Sci., vol. 34, no. 4, hal. 101847, 2022, doi: 10.1016/j.jksus.2022.101847.
S. Deepak dan P. M. Ameer, “Brain tumor classification using deep CNN features via transfer learning,” Comput. Biol. Med., vol. 111, no. March, hal. 103345, 2019, doi: 10.1016/j.compbiomed.2019.103345.
M. M. Hasan, H. Ali, M. F. Hossain, dan S. Abujar, “Preprocessing of Continuous Bengali Speech for Feature Extraction,” 2020 11th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2020, hal. 1–4, 2020, doi: 10.1109/ICCCNT49239.2020.9225469.
A. Peryanto, A. Yudhana, dan R. Umar, “Convolutional Neural Network and Support Vector Machine in Classification of Flower Images,” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 8, no. 1, hal. 1–7, 2022, doi: 10.23917/khif.v8i1.15531.
S. Alzughaibi dan S. El Khediri, “A Cloud Intrusion Detection Systems Based on DNN Using Backpropagation and PSO on the CSE-CIC-IDS2018 Dataset,” Appl. Sci., vol. 13, no. 4, hal. 2276, 2023, doi: https://doi.org/10.3390/app13042276.
A. T. Handoyo dan G. P. Kusuma, “Severity Classification of Diabetic Retinopathy Using Ensemble Stacking Method,” Rev. d’Intelligence Artif., vol. 36, no. 6, hal. 881–887, 2022, doi: 10.18280/ria.360608.
S. K. Baranwal, K. Jaiswal, K. Vaibhav, A. Kumar, dan R. Srikantaswamy, “Performance analysis of Brain Tumour Image Classification using CNN and SVM,” Proc. 2nd Int. Conf. Inven. Res. Comput. Appl. ICIRCA 2020, hal. 537–542, 2020, doi: 10.1109/ICIRCA48905.2020.9183023.
DOI: https://doi.org/10.30865/mib.v8i1.6939
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.