Deteksi Serangan DDOS Pada Jaringan SDN dengan Metode Random Forest

 Ardhian Ekawijana (Politeknik Negeri Bandung, Bandung Barat, Indonesia)
 (*)Akhmad Bakhrun Mail (Politeknik Negeri Bandung, Bandung Barat, Indonesia)
 M Teguh Kurniawan (Universitas Telkom, Bandung, Indonesia)

(*) Corresponding Author

Submitted: October 23, 2023; Published: January 31, 2024

Abstract

Distributed Denial Service (DDoS) Attack is an attempt by an attacker to paralyze a network system by flooding it with requests. A busy system can cause a drop in performance and even crash. Software Defined Service (SDN) is a new paradigm in creating a network in a certain area. SDN, with all its advantages and flexibility in implementation, is attractive to implement, but still leaves major security problems, especially being vulnerable to DDoS attacks. This research will detect whether a particular request is DDoS or not. Random Forest is a method for developing Decision Trees to classify whether a request or data packet is an attack or not. Random Forest as a development method from the previous method covers the weakness of overfitting. The results of this research were 98% for accuracy values.

Keywords


DoS; Random Forest; SDN; Detection; Accuracy

Full Text:

PDF


Article Metrics

Abstract view : 72 times
PDF - 14 times

References

Z. Yang and K. L. Yeung, “Sdn candidate selection in hybrid ip/sdn networks for single link failure protection,” IEEE/ACM Trans. Netw., vol. 28, no. 1, pp. 312–321, 2020.

X. Zuo, X. Pang, P. Zhang, J. Zhang, T. Dong, and P. Zhang, “A security-aware software-defined IoT network architecture,” 2020 IEEE Comput. Commun. IoT Appl. ComComAp 2020, 2020.

A. O. Sangodoyin, M. O. Akinsolu, P. Pillai, and V. Grout, “Detection and Classification of DDoS Flooding Attacks on Software-Defined Networks: A Case Study for the Application of Machine Learning,” IEEE Access, vol. 9, pp. 122495–122508, 2021.

Ismail et al., “A Machine Learning-Based Classification and Prediction Technique for DDoS Attacks,” IEEE Access, vol. 10, pp. 21443–21454, 2022.

M. S. El Sayed, N. A. Le-Khac, M. A. Azer, and A. D. Jurcut, “A Flow-Based Anomaly Detection Approach With Feature Selection Method Against DDoS Attacks in SDNs,” IEEE Trans. Cogn. Commun. Netw., vol. 8, no. 4, pp. 1862–1880, 2022.

M. T. Kurniawan, “PENGEMBANGAN METODE ENTROPY UNTUK DETEKSI SERANGAN DISTRIBUTED DENIAL OF SERVICE (DDoS) PADA SOFTWARE DEFINED NETWORK (SDN) DENGAN PENERAPAN METODE FEATURE SELECTION.” Universitas Indonesia, Jakarta, pp. 1–77, 2022.

A. Ekawijana, A. Bakhrun, and Z. Arsyad, “Deteksi Dini Anak Disleksia dengan metode Support Vector Machine,” vol. 4, no. September, pp. 217–224, 2022.

E. Prasetyo, Data Mining, Mengolah Data Menjadi Informasi Menggunakan Matlab, 1st ed. Yogyakarta: Andi Yogyakarta, 2014.

J. Han, M. Kamber, and J. Pei, Data mining: Data mining concepts and techniques. 2012.

M. T. Kurniawan and S. Yazid, “Mitigation and Detection Strategy of DoS Attack on Wireless Sensor Network Using Blocking Approach and Intrusion Detection System,” 2nd Int. Conf. Electr. Commun. Comput. Eng. ICECCE 2020, no. June, pp. 1–5, 2020.

C. H. Hsu, “Optimal Decision Tree for Cycle Time Prediction and Allowance Determination,” IEEE Access, vol. 9, pp. 41334–41343, 2021.

G. Seeja, A. S. A. Doss, and V. B. Hency, “A Novel Approach for Disaster Victim Detection Under Debris Environments Using Decision Tree Algorithms With Deep Learning Features,” IEEE Access, vol. 11, no. June, pp. 54760–54772, 2023.

A. Kumar, “Random Forest Classifier Python Example,” Data Analytics, 2023. [Online]. Available: https://vitalflux.com/random-forest-classifier-python-code-example/.

Zindagi, “What are the Advantages, Disadvantages, and Architectural Components of SDN?,” Zindagi Technol., 2022.

S. S. Patra, R. Govindaraj, S. Chowdhury, M. A. Shah, R. Patro, and S. Rout, “Energy Efficient End Device Aware Solution Through SDN in Edge-Cloud Platform,” IEEE Access, vol. 10, no. October, pp. 115192–115204, 2022.

M. Paliwal and K. K. Nagwanshi, “Effective Flow Table Space Management Using Policy-Based Routing Approach in Hybrid SDN Network,” IEEE Access, vol. 10, pp. 59806–59820, 2022.

A. Javadpour, F. Ja’fari, T. Taleb, M. Shojafar, and B. Yang, “SCEMA: An SDN-Oriented Cost-Effective Edge-Based MTD Approach,” IEEE Trans. Inf. Forensics Secur., vol. 18, pp. 667–682, 2023.

C. Miranda, G. Kaddoum, A. Boukhtouta, T. Madi, and H. A. Alameddine, “Intrusion Prevention Scheme Against Rank Attacks for Software-Defined Low Power IoT Networks,” IEEE Access, vol. 10, no. December, pp. 129970–129984, 2022.

L. Yang and H. Zhao, “DDoS attack identification and defense using SDN based on machine learning method,” Proc. - 2018 15th Int. Symp. Pervasive Syst. Algorithms Networks, I-SPAN 2018, pp. 174–178, 2019.

H. Yang, H. Pan, and L. Ma, “A Review on Software Defined Content Delivery Network: A Novel Combination of CDN and SDN,” IEEE Access, vol. 11, no. March, pp. 43822–43843, 2023.

Q. Guo et al., “SDN-Based End-to-End Fragment-Aware Routing for Elastic Data Flows in LEO Satellite-Terrestrial Network,” IEEE Access, vol. 7, pp. 396–410, 2019.

M. D. Ramdhani, B. Sugiarto, and A. Rukmana, “Jurnal FUSE – Teknik Elektro Simulasi Jaringan SDN menggunakan controller RYU Pada Mininet Dengan 5 Topologi Jaringan SDN Network Simulation using RYU controller on Mininet With 5 Network Topologies,” vol. 1, no. 2, pp. 101–110, 2021.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Deteksi Serangan DDOS Pada Jaringan SDN dengan Metode Random Forest

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.