Klasifikasi Penyakit Daun Padi Menggunakan KNN dengan GLCM dan Canny Edge Detection

 (*)Ike Verawati Mail (Universitas Amikom Yogyakarta, Yogyakarta, Indonesia)
 Ridwan Al Akhyar Aunurrohim (Universitas Amikom Yogyakarta, Yogyakarta, Indonesia)

(*) Corresponding Author

Submitted: October 12, 2023; Published: January 29, 2024

Abstract

Rice plants have an important role in human survival, especially in Indonesia where rice plants are the staple food source for most of the population. The Central Statistics Agency reported that rice consumption in Indonesia reached 28.69 million tons in 2019. In the same year, rice production in Indonesia reached 31.31 million tons. However, production results decreased compared to the previous year, which amounted to 33.94 million tons. One of the factors causing the decline in quality and even death of rice plants is pests and disease. According to the International Rice Research Institute, every year farmers lose an average of 37 percent of their harvest due to pest and disease attacks. The Food and Agriculture Organization also reported a similar thing, where 20 to 40 percent of world food production failures were caused by pests and diseases. Farmers' lack of knowledge and the limited number of experts result in ineffective disease diagnosis. Therefore, a step or method is needed so that the disease detection process in rice plants becomes more effective. This research uses the K-Nearest Neighbor classification algorithm with Gray Level Co-Occurrence Matrix and Canny Edge Detection to classify diseases in rice plants. The result is that Canny Edge Detection has a positive influence on method performance with accuracy reaching 91.67%, precision 87.37% and recall 87.50% at k=7.

Keywords


Canny Edge Detection; GLCM; Classification; KNN; Rice Disease

Full Text:

PDF


Article Metrics

Abstract view : 148 times
PDF - 56 times

References

S. Sopialena, S. Suyadi, S. Sofian, D. Tantiani, and A. N. Fauzi, “EFEKTIVITAS CENDAWAN ENDOFIT SEBAGAI PENGENDALI PENYAKIT BLAST PADA TANAMAN PADI (Oryza sativa),” Agrifor, vol. 19, no. 2, p. 355, 2020.

BPS, “Kajian Konsumsi Bahan Pokok 2019,” Badan Pusat Statistik, 2019. [Online]. Available: https://www.bps.go.id/publication/2021/11/25/68b1b04ce68c7d6a1c564165/konsumsi-bahan-pokok-2019.html. [Accessed: 02-Oct-2023].

BPS, “Luas Panen dan Produksi Padi di Indonesia 2019 (Hasil Survei Kerangka Sampel Area),” BPS, Statistics Indonesia, 2020. [Online]. Available: https://www.bps.go.id/. [Accessed: 02-Oct-2023].

S. A. M. Harun, M. I. Pradhipta, and U. Achmad, “Perubahan Sosial Masyarakat Akibat Penurunan Kualitas Padi Di Desa Wonojati Kecamatan Jenggawah Kabupaten Jember,” SOCA J. Sos. Ekon. Pertan., vol. 13, no. 1, p. 38, 2019.

E. L. Mique and T. D. Palaoag, “Rice pest and disease detection using convolutional neural network,” ACM Int. Conf. Proceeding Ser., pp. 147–151, 2018.

J. Boulent, S. Foucher, J. Théau, and P. L. St-Charles, “Convolutional Neural Networks for the Automatic Identification of Plant Diseases,” Front. Plant Sci., vol. 10, no. July, 2019.

M. J. Hasan, S. Mahbub, M. S. Alom, and M. Abu Nasim, “Rice Disease Identification and Classification by Integrating Support Vector Machine with Deep Convolutional Neural Network,” 1st Int. Conf. Adv. Sci. Eng. Robot. Technol. 2019, ICASERT 2019, no. December 2020, 2019.

A. Rahmawati and D. Fitrianingsih, “Aplikasi Bioteknologi pada Tanaman sebagai Alternatif Pencegahan Krisis Pangan,” Agritechpedia J. Agric. Technol., vol. 1, no. 01 SE-Articles, pp. 57–63, Jun. 2023.

R. Silvia, “Pengolahan citra digital dan histogram dengan phyton dan text editor phycharm,” Technol. J. Ilm., vol. 11, no. 3, pp. 181–186, 2020.

R. I. Borman, I. Ahmad, and Y. Rahmanto, “Klasifikasi Citra Tanaman Perdu Liar Berkhasiat Obat Menggunakan Jaringan Syaraf Tiruan Radial Basis Function,” Bull. Informatics Data Sci., vol. 1, no. 1, pp. 6–13, 2022.

I. Wulandari, H. Yasin, and T. Widiharih, “Klasifikasi Citra Digital Bumbu Dan Rempah Dengan Algoritma Convolutional Neural Network (Cnn),” J. Gaussian, vol. 9, no. 3, pp. 273–282, 2020.

A. Purnamawati, W. Nugroho, D. Putri, and W. F. Hidayat, “Deteksi Penyakit Daun pada Tanaman Padi Menggunakan Algoritma Decision Tree, Random Forest, Naïve Bayes, SVMdan KNN,” InfoTekJar J. Nas. Inform. dan Teknol. Jar., vol. 5, no. 1, pp. 212–215, 2020.

Isman, Andani Ahmad, and Abdul Latief, “Perbandingan Metode KNN Dan LBPH Pada Klasifikasi Daun Herbal,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, pp. 557–564, 2021.

B. Sandy, J. K. Siahaan, P. Permana, and M. Muhathir, “Klasifikasi Citra Wayang Dengan Menggunakan Metode k-NN & GLCM,” in Semantika (Seminar Nasional Teknik Informatika), 2019, vol. 2, no. November, pp. 71–77.

D. P. Pamungkas, “Ekstraksi Citra menggunakan Metode GLCM dan KNN untuk Identifikasi Jenis Anggrek (Orchidaceae),” Innov. Res. Informatics, vol. 1, no. 2, 2019.

R. Andrian, S. Anwar, M. A. Muhammad, and A. Junaidi, “Identifikasi Kupu-Kupu Menggunakan Ekstraksi Fitur Deteksi Tepi (Edge Detection) dan Klasifikasi K-Nearest Neighbor (KNN),” J. Tek. Inform. dan Sist. Inf., vol. 5, no. 2, 2019.

J. Shah, H. Prajapati, and V. Dabhi, “Rice Leaf Diseases,” UCI Machine Learning Repository, 2019. [Online]. Available: https://archive.ics.uci.edu/dataset/486/rice+leaf+diseases. [Accessed: 01-Oct-2023].

D. Luthfy, C. Setianingsih, and M. W. Paryasto, “Indonesian Sign Language Classification Using You Only Look Once,” vol. 10, no. 1, pp. 454–459, 2023.

A. N. Zulfa, Jasril, M. Irsyad, F. Yanto, and S. Sanjaya, “Optimasi Convolutional Neural Network NASNetLarge Menggunakan Augmentasi Data untuk Klasifikasi Citra Penyakit Daun Padi,” J. MEDIA Inform. BUDIDARMA, vol. 7, no. April, pp. 696–706, 2023.

K. Azmi, S. Defit, and S. Sumijan, “Implementasi Convolutional Neural Network ( CNN ) Untuk Klasifikasi Batik Tanah Liat Sumatera Barat,” J. UNITEK, vol. 16, no. 1, pp. 28–40, 2023.

D. Efendi, Jasril, S. Sanjaya, F. Syafria, and E. Budianita, “Penerapan Algoritma Convolutional Neural Network Arsitektur ResNet-50 untuk Klasifikasi Citra Daging Sapi dan Babi,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 3, pp. 607–614, 2022.

R. Prabowo, A. Afifah, and A. Roudhoh, “Klasifikasi Image Tumbuhan Obat Sirih dan Binahong Menggunakan Metode Convolutional Neural Network (CNN),” J. Komputasi, vol. 10, no. 2, pp. 48–54, Oct. 2022.

N. B. Tsani and H. Harliana, “Implementasi Deteksi Tepi Canny Dengan Transformasi Powerlaw Dalam Mendeteksi Stadium Kanker Serviks,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 1, no. 01, pp. 22–33, 2019.

Johan Wahyudi and Ihdahubbi Maulida, “PENGENALAN POLA CITRA KAIN TRADISIONAL MENGGUNAKAN GLCM DAN KNN,” J. Teknol. Inf. Univ. Lambung Mangkurat, vol. 4, no. 2, pp. 43–48, Oct. 2019.

L. Safira, B. Irawan, and C. Setianingsih, “K-Nearest Neighbour Classification and Feature Extraction GLCM for Identification of Terry’s Nail,” in 2019 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT), 2019, pp. 98–104.

M. Ramadhani, S. Suprayogi, and H. B. Dyah, “Klasifikasi Jenis Jerawat Berdasarkan Tekstur Dengan Menggunakan Metode Glcm,” eProceedings Eng., vol. 5, no. 1, 2018.

I. A. Nikmatun and I. Waspada, “IMPLEMENTASI DATA MINING UNTUK KLASIFIKASI MASA STUDI MAHASISWA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 10, no. 2, pp. 421–432, 2019.

P. Putra, A. M. H. Pardede, and S. Syahputra, “ANALISIS METODE K-NEAREST NEIGHBOUR (KNN) DALAM KLASIFIKASI DATA IRIS BUNGA,” JTIK (Jurnal Tek. Inform. Kaputama), vol. 6, no. 1, pp. 297–305, 2022.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Penyakit Daun Padi Menggunakan KNN dengan GLCM dan Canny Edge Detection

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.