Analisis Data Mining dalam Komparasi Average Linkage AHC dan K-Means Clustering untuk Dataset Facebook Live Sellers
Abstract
Facebook Live is a social media platform owned by Facebook that allows users to broadcast videos directly or live stream via the internet. Users can share moments in real-time with friends, followers, or members of certain groups. The platform allows anyone with a Facebook account to create live video broadcasts from a mobile device or computer equipped with a webcam. Many Micro, Small and Medium Enterprises (MSMEs) use Facebook Live as a tool to sell products or services directly to their audience. This strategy is increasingly popular in direct marketing on social media, especially in countries such as China and Thailand. Sellers on Facebook Live, known as Facebook Live Sellers, broadcast live on the platform to introduce products or services. They explain all the features offered, answer questions from viewers, and encourage them to make a purchase immediately. To increase buyer interest, they often offer special offers or discounts. Facebook Live Sellers can also be considered a form of influencer marketing, where individuals or businesses build a loyal following and use their influence to promote products and services. Despite the potential benefits, Facebook Live Sellers also face challenges. They interact directly with potential buyers, who may sometimes be dissatisfied with the product offered or the way the seller promotes it. Therefore, evaluations such as comments, reactions (such as like, unlike, angry), and other interactions during broadcasts are important. This research aims to group potential buyers' reactions during Facebook Live broadcasts as a strategy to overcome several problems in direct sales via this platform. In addition, grouping by the number of likes and comments can help sellers identify the most active groups of buyers and have the potential to become loyal customers. The number of data samples was determined using the Solvin method so that the dataset that became the data sample was 341 data. The methods used for grouping are K-Means and AHC (Average linkage) with the final results showing that the amount of data grouped into three clusters by both methods is the same, with most of the data being in Cluster 0, namely 98.5% of the total data sample. . Cluster 1 has a small amount of data, namely 0.6%, while Cluster 2 has 0.9% of the data sample.
Keywords
Full Text:
PDFArticle Metrics
Abstract view : 695 timesPDF - 421 times
References
S. Al Syahdan and A. Sindar, “Data Mining Penjualan Produk Dengan Metode Apriori Pada Indomaret Galang Kota,” J. Nas. Komputasi dan Teknol. Inf., vol. 1, no. 2, 2018, doi: 10.32672/jnkti.v1i2.771.
Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI
A. Aditya, I. Jovian, and B. N. Sari, “Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019,” J. Media Inform. Budidarma, vol. 4, no. 1, pp. 51–58, 2020.
R. Maya, F. Lubis, J. Huang, P. Wang, K. Khoifin, and Y. Elvina, “Agglomerative Hierarchical Clustering ( AHC ) Method for Data Mining Sales Product Clustering,” vol. 5, no. 1, pp. 285–294, 2023, doi: 10.47065/bits.v5i1.3569.
N. T. Luchia, H. Handayani, and F. S. Hamdi, “Comparison of K-Means and K-Medoids on Poor Data Clustering in Indonesia Perbandingan K-Means dan K-Medoids Pada Pengelompokan Data Miskin di Indonesia,” vol. 2, no. October, pp. 35–41, 2022.
S. F. Intan, W. Elvira, S. Rahayu, and N. Nurfadilla, “Comparison of the K-Means and K-Medoids Algorithms for Grouping Student Expenditures Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Pengeluaran Mahasiswa,” pp. 35–40, 2023.
L. Zahrotun, S. H. Nugroho, U. Linarti, and A. H. S. Jones, “Analisis Persebaran UMKM Bidang Jasa Menggunakan Metode AHC Complete Linkage,” Kesatria J. Penerapan Sist. Inf. (Komputer dan Manajemen), vol. 4, no. 2, pp. 255–265, 2023.
A. M. Sikana and A. W. Wijayanto, “Analisis Perbandingan Pengelompokan Indeks Pembangunan Manusia Indonesia Tahun 2019 dengan Metode Partitioning dan Hierarchical Clustering,” J. Ilmu Komput., vol. 14, no. 2, pp. 66–78, 2021.
M. E. Al Rivan and R. A. Sonaru, “Perbandingan Metode K-Means Dan GA K-Means Untuk Clustering Dataset Heart Disease Patients,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 3, pp. 2585–2597, 2022.
P. R. N. Saputra and A. Chusyairi, “Perbandingan metode clustering dalam pengelompokan data puskesmas pada cakupan imunisasi dasar lengkap,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 6, pp. 1077–1084, 2020.
E. Luthfi and A. W. Wijayanto, “dalam pengelompokkan indeks pembangunan manusia Indonesia Comparative analysis of hirearchical , k-means , and k-medoids clustering and methods in grouping Indonesia ’ s human development index,” vol. 17, no. 4, pp. 761–773, 2021.
N. Neneng, N. U. Putri, and E. R. Susanto, “Klasifikasi Jenis Kayu Menggunakan Support Vector Machine Berdasarkan Ciri Tekstur Local Binary Pattern,” CYBERNETICS, vol. 4, no. 02, pp. 93–100, 2021.
B. Charbuty and A. Abdulazeez, “Classification based on decision tree algorithm for machine learning,” J. Appl. Sci. Technol. Trends, vol. 2, no. 01, pp. 20–28, 2021.
H. N. Irmanda, R. Astriratma, and S. Afrizal, “Perbandingan metode jaringan syaraf tiruan dan pohon keputusan untuk prediksi churn,” JSI J. Sist. Inf., vol. 11, no. 2, 2019.
E. Sutoyo and A. Almaarif, “Educational data mining for predicting student graduation using the naïve bayes classifier algorithm,” J. RESTI (Rekayasa Sist. Dan Teknol. Informasi), vol. 4, no. 1, pp. 95–101, 2020.
F. Marisa, S. Kom, A. L. Maukar, T. M. Akhriza, and P. D. MMSI, Data mining konsep dan penerapannya. Deepublish, 2021.
F. A. Sianturi, P. M. Hasugian, A. Simangunsong, and B. Nadeak, DATA MINING: Teori dan Aplikasi Weka, vol. 1. IOCS Publisher, 2019.
S. Paembonan and H. Abduh, “Penerapan Metode Silhouette Coeficient Untuk Evaluasi Clutering Obat,” vol. 6, no. 2, pp. 48–54, 2021.
Z. Uykan and S. Member, “Fusion of Centroid-Based Clustering With Graph Clustering : An Expectation-Maximization-Based Hybrid Clustering,” IEEE Trans. Neural Networks Learn. Syst., vol. 34, no. 8, pp. 4068–4082, 2023, doi: 10.1109/TNNLS.2021.3121224.
H. Priyatman, F. Sajid, and D. Haldivany, “Klasterisasi Menggunakan Algoritma K-Means Clustering untuk Memprediksi Waktu Kelulusan Mahasiswa,” J. Edukasi Dan Penelit. Inform., vol. 5, no. 1, p. 62, 2019.
A. Meizar, W. Fahrozi, E. Indra, and M. Saputra, “Analisis Trend Moment Pada Datamining Forecasting Dalam Memprediksi Jumlah Persediaan Obat Herbal,” J. Sist. Inf. dan Ilmu Komput. Prima (JUSIKOM PRIMA), vol. 5, no. 2, pp. 103–106, 2022.
K. U. Syaliman, L. Maysofa, and S. Sapriadi, “Implementasi Forecasting Pada Penjualan Inaura Hair Care Dengan Metode Single Exponential Smoothing,” J. Test. dan Implementasi Sist. Inf., vol. 1, no. 2, pp. 82–91, 2023.
I. Firstiano, S. Achmadi, and F. S. Wahyuni, “Forecasting Omzet Menggunakan Metode Least Square,” JATI (Jurnal Mhs. Tek. Inform., vol. 4, no. 2, pp. 178–812, 2020.
I. M. D. P. Asana, I. G. I. Sudipa, A. A. T. W. Mayun, N. P. S. Meinarni, and D. V. Waas, “Aplikasi Data Mining Asosiasi Barang Menggunakan Algoritma Apriori-TID,” INFORMAL Informatics J., vol. 7, no. 1, pp. 38–45, 2022.
N. Syahputri, “Penerapan Data Mining Asosiasi pada Pola Transaksi dengan Metode Apriori,” J-SAKTI (Jurnal Sains Komput. Dan Inform., vol. 4, no. 2, pp. 728–736, 2020.
A. R. Wibowo and A. Jananto, “Implementasi Data Mining Metode Asosiasi Algoritma FP-Growth Pada Perusahaan Ritel,” Inspir. J. Teknol. Inf. dan Komun., vol. 10, no. 2, pp. 200–212, 2020.
A. Yang, W. Zhang, J. Wang, K. Yang, Y. Han, and L. Zhang, “Review on the application of machine learning algorithms in the sequence data mining of DNA,” Front. Bioeng. Biotechnol., vol. 8, p. 1032, 2020.
M. Cheng, L. Cao, and K. Ning, “Microbiome big-data mining and applications using single-cell technologies and metagenomics approaches toward precision medicine,” Front. Genet., vol. 10, p. 972, 2019.
L. Setiyani, M. Wahidin, D. Awaludin, and S. Purwani, “Analisis Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Data Mining Naïve Bayes: Systematic Review,” Fakt. Exacta, vol. 13, no. 1, pp. 35–43, 2020.
T. Hidayat, D. Y. Sari, and Y. Azzery, “Analisa Prediksi Pertumbuhan Start-up Di Era Industri 4.0 Menggunakan Metode Markov Chain,” Teknokom, vol. 3, no. 2, pp. 1–7, 2020.
R. Z. Nainggolan, K. Ibnutama, and M. G. Suryanata, “Implementasi Data Mining Dengan Metode Regresi Linier BergandaDalam Estimasi Mahasiswa Baru Pada SekolahTinggi Agama Islam Raudhatul Akmal BatangKuis,” J. Cyber Tech, vol. 1, no. 1, 2021.
A. S. L. T. T. H. Hafizah, “Data Mining Estimasi Biaya Produksi Ikan Kembung Rebus Dengan Regresi Linier Berganda,” J. Sist. Inf. Triguna Dharma (JURSI TGD), no. Vol 1, No 6 (2022): EDISI NOVEMBER 2022, pp. 888–897, 2022, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jsi/article/view/5732/1938
Y. L. Nainel, E. Buulolo, and I. Lubis, “Penerapan Data Mining Untuk Estimasi Penjualan Obat Berdasarkan Pengaruh Brand Image Dengan Algoritma Expectation Maximization (Studi Kasus: PT. Pyridam Farma Tbk),” JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 2, pp. 214–224, 2020.
. F., F. T. Kesuma, and S. P. Tamba, “Penerapan Data Mining Untuk Menentukan Penjualan Sparepart Toyota Dengan Metode K-Means Clustering,” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 2, no. 2, pp. 67–72, 2020, doi: 10.34012/jusikom.v2i2.376.
S. A. Rahmah, “KLASTERISASI POLA PENJUALAN PESTISIDA MENGGUNAKAN METODE K-MEANS CLUSTERING ( STUDI KASUS DI TOKO JUANDA TANI KECAMATAN HUTABAYU RAJA ),” vol. 1, no. 1, pp. 1–5, 2020.
M. A. K-means, “1 , 2 , 3 1,” vol. 1, no. 2, pp. 161–166, 2021.
W. Purba, W. Siawin, and . H., “Implementasi Data Mining Untuk Pengelompokkan Dan Prediksi Karyawan Yang Berpotensi Phk Dengan Algoritma K-Means Clustering,” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 2, no. 2, pp. 85–90, 2019, doi: 10.34012/jusikom.v2i2.429.
Marjiyono, “Penerapan Algoritma Ahc Algorithm Dalam Aplikasi Ppembagian Kelas Siswa Baru,” Semin. Nas. Teknol. Inf. dan Multimed. 2015, pp. 6–8, 2015.
T. Li, A. Rezaeipanah, and E. M. T. El Din, “An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement,” J. King Saud Univ. Inf. Sci., vol. 34, no. 6, pp. 3828–3842, 2022.
R. T. Adek, R. K. Dinata, and A. Ditha, “Online Newspaper Clustering in Aceh using the Agglomerative Hierarchical Clustering Method,” Int. J. Eng. Sci. Inf. Technol., vol. 2, no. 1, pp. 70–75, 2022.
P. Govender and V. Sivakumar, “Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019),” Atmos. Pollut. Res., vol. 11, no. 1, pp. 40–56, 2020.
C. Briggs, Z. Fan, and P. Andras, “Federated learning with hierarchical clustering of local updates to improve training on non-IID data,” in 2020 International Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–9.
K. Zeng, M. Ning, Y. Wang, and Y. Guo, “Hierarchical clustering with hard-batch triplet loss for person re-identification,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 13657–13665.
N. K. Zuhal, “Study Comparison K-Means Clustering dengan Algoritma Hierarchical Clustering,” Pros. Semin. Nas. Teknol. dan Sains, vol. 1, pp. 200–205, 2022, [Online]. Available: https://jurnal.dharmawangsa.ac.id/index.php/djtechno/article/view/966/867
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA
This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com
This work is licensed under a Creative Commons Attribution 4.0 International License.