Clustering Analysis of Poverty Levels in North Sumatra Province Using the Application of Data Mining with the K-Means Algorithm

 Widyastuti Andriyani (Universitas Teknologi Digital Indonesia, Yogyakarta, Indonesia)
 (*)Asyahri Hadi Nasyuha Mail (Universitas Teknologi Digital Indonesia, Yogyakarta, Indonesia)
 Yohanni Syahra (STMIK Triguna Dharma, Medan, Indonesia)
 Bagas Triaji (Universitas Teknologi Digital Indonesia, Yogyakarta, Indonesia)

(*) Corresponding Author

Submitted: October 5, 2023; Published: October 24, 2023

Abstract

North Sumatra, as one of the largest provinces in Indonesia, has serious challenges related to poverty that require serious attention North Sumatra, as one of the largest provinces in Indonesia, has serious challenges related to poverty that require serious attention and in-depth analysis. Thus, research on poverty levels in this province becomes very relevant and urgent. Therefore, a more in-depth analysis is needed regarding poverty levels in various regions within this province using data mining methods. The data mining approach is a way to gain understanding from large amounts of data. In the context of the problem of poverty levels, data mining has the potential to help reveal patterns that may be hidden in economic and social data. One algorithm that is often applied in clustering analysis is the K-Means algorithm. The K-Means algorithm is a clustering method that is widely used in data analysis and allows grouping data based on similar characteristics, so that it can be used to classify areas with similar levels of poverty. The results of this research show that data mining with the application of the K-Means algorithm can help produce more effective decisions in analyzing clustering of poverty levels in North Sumatra Province involving the use of data over a ten-year period, namely from 2013 to 2022, which records the number of poor people based on District and city. 3 groups were produced, namely 3 levels of poverty, including relatively stable, very vulnerable and vulnerable. Data from 33 districts or cities in North Sumatra resulted in a poverty level clustering of 1 city that was very vulnerable, 4 cities that were vulnerable and 27 cities that were relatively stable.

Keywords


Data mining, K-Means algorithm, Mapping, Poverty Level, North Sumatra

Full Text:

PDF


Article Metrics

Abstract view : 134 times
PDF - 33 times

References

I. Setiawan and J. Jamaliah, ‘Analisis Kebijakan Publik Dalam Mengatasi Kemiskinan Di Indonesia’, Etn. J. Ekon. dan Tek., vol. 2, no. 5, pp. 399–405, 2023.

R. Juanda and M. K. Siregar, ‘PENGARUH PENGELUARAN PEMERINTAH, TINGKAT PENGANGGURAN TERBUKA DAN PENDAPATAN ASLI DAERAH TERHADAP TINGKAT KEMISKINAN DI PROVINSI SUMATERA UTARA PADA TAHUN 2017-2021’, J. Ekon. Indones., vol. 12, no. 1, pp. 19–31, 2023.

B. K. Amal et al., ‘PROPOSAL PENELITIAN TERAPAN DETERMINAN KEMISKINAN ABSOLUT DI KABUPATEN/KOTA PROPINSI SUMATERA UTARA TAHUN 2022-2023’, 2023.

A. M. Sarhan, ‘Data Mining in Internet of Things Systems: A Literature Review’, J. Eng. Res., vol. 6, no. 5, pp. 252–263, 2023.

R. Mussabayev, N. Mladenovic, B. Jarboui, and R. Mussabayev, ‘How to use K-means for big data clustering?’, Pattern Recognit., vol. 137, p. 109269, 2023.

M. A. Baherifard, R. Kazemzadeh, A. S. Yazdankhah, and M. Marzband, ‘Improving the Effect of Electric Vehicle Charging on Imbalance Index in the‎ Unbalanced Distribution Network Using Demand Response Considering Data‎ Mining Techniques’, J. Oper. Autom. Power Eng., vol. 11, no. 3, pp. 182–192, 2023.

N. N. Afidah and M. Masrukan, ‘Penerapan Metode Clustering dengan Algoritma K-Means untuk Pengelompokkan Data Migrasi Penduduk Tiap Kecamatan di Kabupaten Rembang’, in PRISMA, Prosiding Seminar Nasional Matematika, 2023, vol. 6, pp. 729–738.

M. Sholeh and K. Aeni, ‘Perbandingan Evaluasi Metode Davies Bouldin, Elbow dan Silhouette pada Model Clustering dengan Menggunakan Algoritma K-Means’, STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 8, no. 1, pp. 56–65, 2023.

A. P. Adistya, N. Luthfyani, P. Tara, R. Adriyan, and P. Rosyani, ‘Klasterisasi Menggunakan Algoritma K-Means Clustering Untuk Memprediksi Kelulusan Mata Kuliah Mahasiswa’, OKTAL J. Ilmu Komput. dan Sains, vol. 2, no. 08, pp. 2301–2306, 2023.

I. Verawati and A. L. Rebecca, ‘Klasterisasi Jenis Tanah pada Tanaman Cabai Menggunakan Algoritma K-Means’, J. MEDIA Inform. BUDIDARMA, vol. 7, no. 3, pp. 1414–1422, 2023.

S. W. Harjono, N. W. Utami, I. G. Agung, and P. Dwi, ‘Klasterisasi Tingkat Penjualan pada Startup Panak . id dengan Algoritma K-Means’, vol. 17, no. 1, pp. 55–66, 2023.

I. A. N. Afifah and H. Nurdiyanto, ‘DATA MINING CLUSTERING DALAM PENGELOMPOKAN BUKU PERPUSTAKAAN MENGUNAKAN ALGORITMA K-MEANS’, JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 3, pp. 802–814, 2023.

T. A. Aria, Y. Yuliadi, M. Julkarnain, and F. Hamdan, ‘Penerapan Algoritma K-Means Clustering Untuk Data Obat’, KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 649–657, 2023.

A. Permadi and Y. A. Wijaya, ‘Pengelompokkan Dataset Bus Menggunakan Algoritma K-Means’, INFORMATICS Educ. Prof. J. Informatics, vol. 8, no. 1, pp. 19–33, 2023.

M. S. Ramadhan et al., ‘Analysis of FAM in satisfaction of inpatient services’, Telkomnika (Telecommunication Comput. Electron. Control., vol. 19, no. 5, pp. 1529–1534, 2021, doi: 10.12928/TELKOMNIKA.v19i5.20295.

D. P. Indini, S. R. Siburian, and D. P. Utomo, ‘Implementasi Algoritma DBSCAN untuk Clustering Seleksi Penentuan Mahasiswa yang Berhak Menerima Beasiswa Yayasan’, Pros. Semin. Nas. Sos. Humaniora, dan Teknol., pp. 325–331, 2022.

M. Ulfah and A. S. Irtawty, ‘Implementation of Data Mining Clustering Using the K-Means Method in Grouping Library Books’, Int. ABEC, pp. 188–194, 2023.

S. M. Dol and P. M. Jawandhiya, ‘Classification Technique and its Combination with Clustering and Association Rule Mining in Educational Data Mining—A survey’, Eng. Appl. Artif. Intell., vol. 122, p. 106071, 2023.

A. Triayudi and S. Sumiati, ‘Penerapan Algoritma Hash Based dalam Penemuan Aturan Asosiasi Penjualan Tanaman Hias’, Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1293–1300, 2022, doi: 10.47065/bits.v4i3.2626.

B. Marhusen, S. R. Putri, R. D. Rosyana, A. N. Azzahra, A. P. Maharani, and D. Desmawan, ‘Analisis Pengaruh Distribusi Pendapatan Dan Tingkat Pengangguran Terbuka Terhadap Kemiskinan Di Kabupaten Brebes 2018–2022’, J. Ekon. Bisnis dan Manaj., vol. 2, no. 1, pp. 269–280, 2023.

A. Wahab and S. Sudirman, ‘Persoalan Kemiskinan Perkotaan’, Kaganga J. Pendidik. Sej. dan Ris. Sos. Hum., vol. 6, no. 1, pp. 230–238, 2023.

A. A. Anwar, ‘Faktor-Faktor Yang Mempengaruhi Kemiskinan Di Jawa Tengah Periode 2002-2021 Analisis Data Time Series’, J. Kendali Akunt., vol. 1, no. 3, pp. 194–206, 2023.

A. H. Nasyuha, Z. Zulham, and I. Rusydi, ‘Implementation of K-means algorithm in data analysis’, TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 20, no. 2, p. 307, Apr. 2022, doi: 10.12928/telkomnika.v20i2.21986.

M. Rosadi et al., ‘Clustering Panjang Ruas Jalan di BBPJN Sumut Menggunakan Algoritma K-Means’, vol. 02, no. 1, pp. 29–38, 2023.

R. Fauziah and A. I. Purnamasari, ‘Implementasi Algoritma K-Means pada Kasus Kekerasan Anak dan Perempuan Berdasarkan Usia’, J. Ilmu Komput., 2023.

A. Yani, Z. Azmi, and D. Suherdi, ‘Implementasi Data Mining Menganalisa Data Penjualan Menggunakan Algoritma K-Means Clustering’, J. Sist. Inf. TGD, vol. 2, no. 2, pp. 315–323, 2023.

M. Djaka Permana, A. Lia Hananto, E. Novalia, B. Huda, and T. Paryono, ‘Klasterisasi Data Jamaah Umrah pada Tanurmutmainah Tour Menggunakan Algoritma K-Means’, J. KomtekInfo, vol. 10, pp. 15–20, 2023, doi: 10.35134/komtekinfo.v10i1.332.

S. Fathuroh, ‘Metode K-Means Clustering Dalam Optimalisasi Kinerja Dosen Pendamping Akademik Pada Program Kampus Merdeka’, J. Sistim Inf. dan Teknol., vol. 5, no. 2, pp. 55–60, 2023, doi: 10.37034/jsisfotek.v5i2.172.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Clustering Analysis of Poverty Levels in North Sumatra Province Using the Application of Data Mining with the K-Means Algorithm

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.