Perbandingan Prediksi Obat Berdasarkan Pemakaian Menggunakan Algoritma Single Moving Average dan Support Vector Regression

 Said Nurfan Hidayad Tillah (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 (*)Alwis Nazir Mail (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Iwan Iskandar (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Elvia Budianita (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Iis Afrianty (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)

(*) Corresponding Author

Submitted: October 3, 2023; Published: October 24, 2023

Abstract

To ensure the availability and quality of drugs, Public Health Centers (PHC) must pay attention to the planning and procurement process. The problem that often arises is the increase in drug stock due to the stable use of drugs each month, resulting in excess and expired drugs that are not used. In addition, it is necessary to avoid inappropriate drug demand, which affects stock availability. Drug usage prediction is done with several methods such as the Single Moving Average (SMA) algorithm in the data mining method and the Support Vector Regression (SVR) algorithm in the machine learning method. This algorithm was chosen because the drug data of Diazepam 5 mg and Mefenamic Acid 500 mg is sustainable from January 2020 to June 2023 (42 months). Implementation using the Phyton programming language. Testing using the Mean Absolute Percentage Error (MAPE) method, this study aims to measure the accuracy of predictions in each algorithm. In research with Diazepam 5 mg and Mefenamic Acid 500 mg drugs, with a division of 80% in training data and 20% in test data. With a calculation of 3 periods, the SMA algorithm produces MAPE values of 4.10% and 4.29%, in the "very good" range. The SVR algorithm, which uses an RBF kernel with a complexity parameter of 1.0 and an epsilon parameter of 0.1, produces MAPE results of 7.35% and 9.52%, in the "Very Good" range. Thus, the SMA algorithm predicts better than the SVR algorithm.

Keywords


Mean Absolute Percentage Error; Prediction; Single Moving Average; Support Vector Regression

Full Text:

PDF


Article Metrics

Abstract view : 157 times
PDF - 29 times

References

D. Abdianto, Eliswati, F. Tawakal, and Masrizal, “Prediksi Stok Obat Menggunakan Metode Learning Vector Quantization Studi Kasus Puskesmas Dumai Barat,” SNST J. Seminar Sains Nasional dan Teknologi, vol. 1, no. 1, pp. 68–74, 2021, doi: 10.36499/psnst.v1i1.5093.

R. Asnawi, F. K. Kolibu, and F. R. R. Maramis, “Analisis Manajemen Pengelolaan Obat Di Puskesmas Wolaang,” KESMAS J. Kesehatan Masyarakat Universitas Sam Ratulangi, vol. 8, no. 6, pp. 306–315, 2019.

Yusransyah, “MUTU PELAYANAN KESEHATAN: Analisis Pengelolaan Obat Di Instalasi Farmasi Rumah Sakit,” AMERTA MEDIA, 2021. [Online]. Available: https://books.google.co.id/books?id=eYllEAAAQBAJ

E. Patriya, “Implementasi Support Vector Machine Pada Prediksi Harga Saham Gabungan (IHSG),” J. Ilmiah Teknologi dan Rekayasa, vol. 25, no. 1, pp. 24–38, 2020, doi: 10.35760/tr.2020.v25i1.2571.

A. Wanto, S. Defit, and A. P. Windarto, “Algoritma Fungsi Perlatihan pada Machine Learning berbasis ANN untuk Peramalan Fenomena Bencana,” RESTI J. Rekayasa Sistem dan Teknologi Informasi, vol. 5, no. 2, pp. 254–264, 2021, doi: 10.29207/resti.v5i2.3031.

I. M. Muhamad, S. A. Wardana, A. Wanto, and A. P. Windarto, “Algoritma Machine Learning untuk penentuan Model Prediksi Produksi Telur Ayam Petelur di Sumatera,” J. of Informatics, Electrical and Electronics Engineering, vol. 1, no. 4, pp. 126–134, 2022.

A. A. Munawar and Hasanuddin, “Analisis Data Multivariat Menggunakan The Unscrambler X,” Syiah Kuala University Press, 2020. [Online]. Available: https://books.google.co.id/books?id=daTXDwAAQBAJ

A. Y. Fernando, U. Mahdiyah, and A. Sanjaya, “Perbandingan Metode Support Vector Regression dan Simple Moving Average pada Peramalan Harga Saham BBCA.JK,” SEMNAS INOTEK J. Seminar Nasional Inovasi Teknologi , vol. 7, no. 1, 2023, doi: 10.29407/inotek.v7i1.3439.

N. P. N. Hendayani and M. Nurhidayati, “Perbandingan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA) dengan Support Vector Regression (SVR) dalam Memprediksi Jumlah Kunjungan Wisatawan Mancanegara ke Bali,” J. Varian, vol. 3, no. 2, pp. 149–162, 2020, doi: 10.30812/varian.v3i2.668.

M. T. Siregar, G. Made, A. Sasmita, G. Agung, and A. Putri, “Perbandingan Analisis Metode Peramalan Jumlah Kasus Penyakit Menular di Kota Bandung (Studi Kasus: Dinas Kesehatan Kota Bandung),” JITTER J. Ilmiah Teknologi dan Komputer, vol. 3, no. 1, pp. 831–842, 2022.

M. H. Lubis and Sumijan, “Prediksi Tingkat Kriminalitas Menggunakan Metode Single Moving Average,” JSISFOTEK J. Sistim Informasi dan Teknologi, vol. 3, no. 4, pp. 183–188, Aug. 2021, doi: 10.37034/jsisfotek.v3i4.63.

A. R. Hasibuan, W. Ramdhan, and C. Latiffani, “Penerapan Metode Single Moving Average (SMA) Persediaan Jarum Suntik Pada Puskesmas Air Joman,” J-Com J. of Computer, vol. 2, no. 2, pp. 121–128, 2022, doi: 10.33330/j-com.v2i2.1739.

M. P. Hizbullah, B. Nugroho, and F. A. Akbar, “Sistem Prediksi Pemakaian Stok Obat UPT Puskesmas Gedongan Kota Mojokerto Menggunakan Metode Single Moving Average,” SANTIKA J. Seminar Nasional Informatika Bela Negara, vol. 2, pp. 179–182, 2021, doi: 10.33005/santika.v2i0.139.

A. N. Putri and A. K. Wardhani, “Penerapan Metode Single Moving Average Untuk Peramalan Harga Cabai Rawit Hijau,” IJTIS J. Indonesian of Technology, Informatics and Science, vol. 2, no. 1, pp. 37–40, 2020, doi: 10.24176/ijtis.v2i1.5653.

R. D. Pudiastuti and Y. O. Pratiwi, “Buku Sakti Forex Trading dengan Ichimoku Kinko Hyo: Obat Trading Anti Boncos,” Anak Hebat Indonesia, 2022. Accessed: Sep. 30, 2023. [Online]. Available: https://books.google.co.id/books?id=YGy0EAAAQBAJ

F. Novianti, N. Ulinnuha, M. Hafiyusholeh, and A. Arianto, “Prediksi Penggunaan Bahan Bakar pada PLTGU menggunakan Metode Support Vector Regression (SVR),” J. Techno.COM, vol. 21, no. 2, pp. 249–255, 2022, doi: 10.33633/tc.v21i2.5712.

V. Siahaan and R. H. Sianipar, “Data Science Dengan Python GUI Untuk Programmer,” BALIGE PUBLISHING, 2021. [Online]. Available: https://books.google.co.id/books?id=GHE-EAAAQBAJ

L. M. Ginting, M. M. Sigiro, E. D. Manurung, and J. J. P. Sinurat, “Perbandingan Metode Algoritma Support Vector Regression dan Multiple Linear Regression Untuk Memprediksi Stok Obat,” J. of Applied Technology and Informatics, vol. 1, no. 2, pp. 29–34, 2021.

A. Budi Raharjo, Z. Zizki Dinanto, D. Sunaryono, and D. Purwitasari, “Prediksi Akumulasi Kasus Terkonfirmasi Covid-19 di Indonesia Menggunakan Support Vector Regression,” J. Techno.COM, vol. 20, no. 3, pp. 372–381, 2021, doi: 10.33633/tc.v20i3.5062.

A. Apriliani, H. Zainuddin, Agussalim, and Z. B. Hasanuddin, “Peramalan Tren Penjualan Menu Restoran Menggunakan Metode Single Moving Average,” JTIIK J. Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 6, pp. 1161–1168, 2020, doi: 10.25126/jtiik.202072732.

H. H. Zain, M. N. Fauzan, and R. Habibi, “Peramalan Terhadap Permintaan Produk Dalam Sektor Logistik di Indonesia,” Penerbit Buku Pedia, 2023. [Online]. Available: https://books.google.co.id/books?id=itTFEAAAQBAJ

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Perbandingan Prediksi Obat Berdasarkan Pemakaian Menggunakan Algoritma Single Moving Average dan Support Vector Regression

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.