https://eurogeojournal.eu/ https://jurnal.pendidikanbiologiukaw.ac.id/
https://e-kerja.bnpp.go.id/bkp/https://journal.dkpp.go.id/wow/https://ppid.dkpp.go.id/_fungsi/dana/https://jurnal.pendidikanbiologiukaw.ac.id/https://e-kerja.bnpp.go.id/Pengawas/demo/https://jos.unsoed.ac.id/stats/2024/https://journal.umkendari.ac.id/dm/https://jurnal.radenfatah.ac.id/demo/https://journal.ar-raniry.ac.id/lap/https://sipeg.ui.ac.id/dm/https://e-kerja.bnpp.go.id/Pengawas/dana/
slot gacor 2025slot gacor 2025slot gacor 2025slot gacor 2025slot gacor 2025slot gacor
Analisis Optimasi Algoritma Decision Tree, Logistic Regression dan SVM Menggunakan Soft Voting | Pratama | JURNAL MEDIA INFORMATIKA BUDIDARMA

Analisis Optimasi Algoritma Decision Tree, Logistic Regression dan SVM Menggunakan Soft Voting

Yosiko Aditya Pratama, Fikri Budiman, Sri Winarno, Defri Kurniawan

Abstract


Agriculture constitutes a fundamental pillar of a nation's economy. One key to success in agriculture is the selection of suitable land. The prediction of whether land is fertile or not can be efficiently accomplished through a data mining approach. This is because data mining offers several algorithms for extracting crucial information from vast datasets through classification. However, classification algorithms in data mining often encounter the challenge of data imbalance, which can lead to low accuracy rates. Processing data with calculation models that have low accuracy rates can result in numerous erroneous predictions (fail predictions). To address this issue, this research conducts testing and comparative analysis of the confusion matrix results from four calculation models: the Decision Tree algorithm, Logistic Regression, SVM, and the combination of these three algorithms using the Soft Voting ensemble technique. The test results indicate that processing data using the Decision Tree, Logistic Regression, and SVM algorithms, along with the optimization of the Soft Voting ensemble model, achieves the highest accuracy rate of 91.53%. This accuracy rate is higher compared to the other three calculation models: the Decision Tree algorithm with a difference of 3.83%, Logistic Regression with a difference of 2.66%, and SVM with a difference of 1.36%. This research makes a significant contribution by identifying an efficient solution to improve the accuracy of identifying fertile agricultural land, which is a crucial step in supporting the success of the agricultural sector in the country's economy.

Keywords


Decision tree, Logistic Regression, Support Vector Machine, Soft Voting, Data Mining

Full Text:

PDF

References


S. I. Kusumaningrum, “Pemanfaatan Sektor Pertanian Sebagai Penunjang Pertumbuhan Perekonomian Indonesia,†Jurnal Transaksi, Vol. 11, No. 1, Hlm.80, 2019.

L. Apriatin Dan L. Kamelia, “Pemanfaatan Tanah Subur Melalui Pendampingan Budidaya Sayuran Secara Organik,†Jurnal Abdimu : Pengabdian Kepada Masyarakat, Vol. 1, No. 2, Hlm. 39–47, 2021, Doi: 10.32627.

L. Setiyani, M. Wahidin, D. Awaludin, Dan S. Purwani, “Analisis Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Data Mining Naïve Bayes : Systematic Review,†Faktor Exacta, Vol. 13, No. 1, Hlm. 35, Jun 2020, Doi: 10.30998/Faktorexacta.V13i1.5548.

Z. Nabila, A. Rahman Isnain, Dan Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,†Jurnal Teknologi Dan Sistem Informasi (Jtsi), Vol. 2, No. 2, Hlm. 100, 2021.

A. R. Wibowo Dan A. Jananto, “Implementasi Data Mining Metode Asosiasi Algoritma Fp-Growth Pada Perusahaan Ritel,†Jurnal Teknologi Informasi dan Komunikasi, Vol. 10, No. 2, Hlm. 200–212, 2020.

Y. L. Nainel, E. Buulolo, Dan I. Lubis, “Penerapan Data Mining Untuk Estimasi Penjualan Obat Berdasarkan Pengaruh Brand Image Dengan Algoritma Expectation Maximization (Studi Kasus: Pt. Pyridam Farma Tbk),†Jurikom (Jurnal Riset Komputer), Vol. 7, No. 2, Hlm. 214, Apr 2020, Doi: 10.30865/Jurikom.V7i2.2097.

A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, Dan W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,†Jurnal Teknoinfo, Vol. 14, No. 2, Hlm. 115, Jul 2020, Doi: 10.33365/Jti.V14i2.679.

T. Novika, P. Poningsih, H. Okprana, A. P. Windarto, Dan H. Siahaan, “Penerapan Data Mining Klasifikasi Tingkat Pemahaman Siswa Pada Pelajaran Matematika,†Jurnal Media Informatika Budidarma, Vol. 5, No. 1, Hlm. 9, Jan 2021, Doi: 10.30865/Mib.V5i1.2498.

K. F. Irnanda, D. Hartama, Dan A. P. Windarto, “Analisa Klasifikasi C4.5 Terhadap Faktor Penyebab Menurunnya Prestasi Belajar Mahasiswa Pada Masa Pandemi,†Jurnal Media Informatika Budidarma, Vol. 5, No. 1, Hlm. 327, Jan 2021, Doi: 10.30865/Mib.V5i1.2763.

S. Sunardi, A. Fadlil, Dan N. M. P. Kusuma, “Comparing Data Mining Classification For Online Fraud Victim Profile In Indonesia,†Intensif: Jurnal Ilmiah Penelitian Dan Penerapan Teknologi Sistem Informasi, Vol. 7, No. 1, Hlm. 1–17, Feb 2023, Doi: 10.29407/Intensif.V7i1.18283.

F. Handayani Dkk., “Komparasi Support Vector Machine, Logistic Regression Dan Artificial Neural Network Dalam Prediksi Penyakit Jantungâ€, Jepin (Jurnal Edukasi Dan Penelitian Informatika), Vol. 7, No. 3, hlm. 329, Des 2021.

N. Sulistiyowati Dan M. Jajuli, “Integrasi Naïve Bayes Dengan Teknik Sampling Smote Untuk Menangani Data Tidak Seimbangâ€, Jurnal Nuansa Informatika, Vol. 14, No. 1, Hlm. 34, 2020.

A. Prayoga Permana, K. Ainiyah, Dan K. Fahmi Hayati Holle, “Analisis Perbandingan Algoritma Decision Tree, Knn, Dan Naive Bayes Untuk Prediksi Kesuksesan Start-Upâ€, JISKa (Jurnal Informatika Sunan Kalijaga), Vol. 6, No. 3, Hlm. 178, 2021.

P. : Amset, I. Batusangkar, I. B. Press, N. Putu, N. Hendayanti, Dan M. Nurhidayati, “Regresi Logistik Biner Dalam Penentuan Ketepatan Klasifikasi Tingkat Kedalaman Kemiskinan Provinsi-Provinsi Di Indonesiaâ€, Sainstek : Jurnal Sains Dan Teknologi, Vol. 12, No. 02, Hlm. 63-70, 2020.

O. Bangun, H. Mawengkang, Dan S. Efendi, “Metode Algoritma Support Vector Machine (Svm) Linier Dalam Memprediksi Kelulusan Mahasiswa,†Jurnal Media Informatika Budidarma, Vol. 6, No. 4, Hlm. 2006, Okt 2022, Doi: 10.30865/Mib.V6i4.4572.

H. B. Kibria, M. Nahiduzzaman, M. O. F. Goni, M. Ahsan, Dan J. Haider, “An Ensemble Approach For The Prediction Of Diabetes Mellitus Using A Soft Voting Classifier With An Explainable Ai,†Sensors, Vol. 22, No. 19, Okt 2022, Doi: 10.3390/S22197268.

F. Yulian Pamuji, V. Puspaning Ramadhan, Dan R. Artikel, “Jurnal Teknologi Dan Manajemen Informatika Komparasi Algoritma Random Forest Dan Decision Tree Untuk Memprediksi Keberhasilan Immunotheraphy Info Artikel Abstrak,†Vol. 7, No. 1, Hlm. 46–50, 2021.

R. Kartika, S. Adi, Dan A. Murnomo, “Implementasi Metode Analytical Hierarchy Process Untuk Prediksi Tingkat Kesuburan Tanahâ€, Edu Komputika Journal, Vol. 6, No. 1, Hlm. 8, 2019

W. Nugraha Dan R. Sabaruddin, “Teknik Resampling Untuk Mengatasi Ketidakseimbangan Kelas Pada Klasifikasi Penyakit Diabetes Menggunakan C4.5, Random Forest, Dan Svmâ€, Vol. 20, No. 3, Hlm. 352-361, 2021.

M. Ilham Aziz Dan A. Zainul Fanani, “Analisis Metode Ensemble Pada Klasifikasi Penyakit Jantung Berbasis Decision Treeâ€, Techno.COM, Vol. 7, No. 1, 2023, Doi: 10.30865/Mib.V7i1.5169.

A. Manconi, G. Armano, M. Gnocchi, Dan L. Milanesi, “A Soft-Voting Ensemble Classifier For Detecting Patients Affected By Covid-19,†Applied Sciences (Switzerland), Vol. 12, No. 15, Agu 2022, Doi: 10.3390/App12157554.




DOI: https://doi.org/10.30865/mib.v7i4.6856

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.