Perbandingan Matriks Loss Pada Model Deep Learning Resnet50 dan Xception dalam Deteksi Objek
|
Abstract
Keywords
Full Text:
PDFArticle Metrics
Abstract view : 109 timesPDF - 24 times
References
M. S. Devi, R. Aruna, D. R. Rajeswari, and R. S. Manogna, “Conv2D Xception Adadelta Gradient Descent Learning Rate Deep learning Optimizer for Plant Species Classification,” in 2023 Third International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India: IEEE, Jan. 2023, pp. 1–4. doi: 10.1109/ICAECT57570.2023.10117710.
H. Chen et al., “A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films,” Sci. Rep., vol. 9, no. 1, p. 3840, Mar. 2019, doi: 10.1038/s41598-019-40414-y.
R. Cobilla et al., “Classification of the Type of Brain Tumor in MRI Using Xception Model,” in 2023 International Conference on Electronics, Information, and Communication (ICEIC), Singapore: IEEE, Feb. 2023, pp. 1–4. doi: 10.1109/ICEIC57457.2023.10049979.
Z. Li, M. Dong, S. Wen, X. Hu, P. Zhou, and Z. Zeng, “CLU-CNNs: Object detection for medical images,” Neurocomputing, vol. 350, pp. 53–59, Jul. 2019, doi: 10.1016/j.neucom.2019.04.028.
P. Thirumalaraju et al., “Evaluation of deep convolutional neural networks in classifying human embryo images based on their morphological quality,” Heliyon, vol. 7, no. 2, p. e06298, Feb. 2021, doi: 10.1016/j.heliyon.2021.e06298.
V. Tanwar and S. Lamba, “Multiple Grapes Leaf Disease Identification Using an Optimal Deep Learning Model: Xception,” in 2023 2nd International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN), Villupuram, India: IEEE, Apr. 2023, pp. 1–6. doi: 10.1109/ICSTSN57873.2023.10151615.
R. Singh, A. Sharma, N. Sharma, and R. Gupta, “Xception Model for Pneumothorax Classification using Chest X-ray Images,” in 2023 2nd International Conference for Innovation in Technology (INOCON), Bangalore, India: IEEE, Mar. 2023, pp. 1–5. doi: 10.1109/INOCON57975.2023.10101280.
J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Netw., vol. 61, pp. 85–117, Jan. 2015, doi: 10.1016/j.neunet.2014.09.003.
R. Padilla, S. L. Netto, and E. A. B. Da Silva, “A Survey on Performance Metrics for Object-Detection Algorithms,” in 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niterói, Brazil: IEEE, Jul. 2020, pp. 237–242. doi: 10.1109/IWSSIP48289.2020.9145130.
L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” J. Big Data, vol. 8, no. 1, p. 53, Mar. 2021, doi: 10.1186/s40537-021-00444-8.
P. Adarsh, P. Rathi, and M. Kumar, “YOLO v3-Tiny: Object Detection and Recognition using one stage improved model,” in 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India: IEEE, Mar. 2020, pp. 687–694. doi: 10.1109/ICACCS48705.2020.9074315.
J. Du, “Understanding of Object Detection Based on CNN Family and YOLO,” J. Phys. Conf. Ser., vol. 1004, p. 012029, Apr. 2018, doi: 10.1088/1742-6596/1004/1/012029.
P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A Review of Yolo Algorithm Developments,” Procedia Comput. Sci., vol. 199, pp. 1066–1073, 2022, doi: 10.1016/j.procs.2022.01.135.
B. Zoph, E. D. Cubuk, G. Ghiasi, T.-Y. Lin, J. Shlens, and Q. V. Le, “Learning Data Augmentation Strategies for Object Detection,” in Computer Vision – ECCV 2020, vol. 12372, A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds., in Lecture Notes in Computer Science, vol. 12372. , Cham: Springer International Publishing, 2020, pp. 566–583. doi: 10.1007/978-3-030-58583-9_34.
A. Dhillon and G. K. Verma, “Convolutional neural network: a review of models, methodologies and applications to object detection,” Prog. Artif. Intell., vol. 9, no. 2, pp. 85–112, Jun. 2020, doi: 10.1007/s13748-019-00203-0.
Y. He, C. Zhu, J. Wang, M. Savvides, and X. Zhang, “Bounding Box Regression With Uncertainty for Accurate Object Detection,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA: IEEE, Jun. 2019, pp. 2883–2892. doi: 10.1109/CVPR.2019.00300.
Z. Cai and N. Vasconcelos, “Cascade R-CNN: High Quality Object Detection and Instance Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 5, pp. 1483–1498, May 2021, doi: 10.1109/TPAMI.2019.2956516.
S. Indolia, A. K. Goswami, S. P. Mishra, and P. Asopa, “Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach,” Procedia Comput. Sci., vol. 132, pp. 679–688, 2018, doi: 10.1016/j.procs.2018.05.069.
Y. Shima, “Image Augmentation for Object Image Classification Based On Combination of Pre-Trained CNN and SVM,” J. Phys. Conf. Ser., vol. 1004, p. 012001, Apr. 2018, doi: 10.1088/1742-6596/1004/1/012001.
V. R. Joseph and A. Vakayil, “SPlit: An Optimal Method for Data Splitting,” Technometrics, vol. 64, no. 2, pp. 166–176, Apr. 2022, doi: 10.1080/00401706.2021.1921037.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Matriks Loss Pada Model Deep Learning Resnet50 dan Xception dalam Deteksi Objek
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.