Peningkatan Algoritma C4.5 Berbasis PSO Pada Penyakit Kanker Payudara

 (*)Rudi Nurcahyo Mail (Universitas Dian Nuswantoro, Semarang, Indonesia)
 Ahmad Zainul Fanani (Universitas Dian Nuswantoro, Semarang, Indonesia)
 Affandy Affandy (Universitas Dian Nuswantoro, Semarang, Indonesia)
 Mochammad Ilham Aziz (Institut Teknologi Al Mahrusiyah, Kediri, Indonesia)

(*) Corresponding Author

Submitted: September 26, 2023; Published: October 22, 2023

Abstract

Onenof the diseases innthe world that causes deathnin women isncancer. Cancernis a diseasencaused by uncontrolled enlargement of abnormal organs in the body. Cancer diagnosis is made using anthropometric data from routine blood analysis. The data used is the Breast Cancer Coimbra Data Set obtained from the UCI Machine Learning Repository. The C4.5 method is andecision treenalgorithm that is often used in the classification process. The selection of the right features, as well as the selectionnof the right method to overcome the class imbalance in the classification process cannimprove the performancenof the C4.5 algorithm. confusion matrix can benused in the Test to determine Classification accuracy. In this research, the application of PSO as a feature organization.

Keywords


Decision Tree; Breast Cancer Coimbra; Death; PSO

Full Text:

PDF


Article Metrics

Abstract view : 273 times
PDF - 105 times

References

F. Sardouk, A. D. Duru, and O. Bayat, “Classification of breast cancer using data mining,” Am. Sci. Res. J. Eng. Technol. Sci., vol. 51, no. 1, pp. 38–46, 2019.

M. U. Ghani, T. M. Alam, and F. H. Jaskani, “Comparison of Classification Models for Early Prediction of Breast Cancer,” 3rd Int. Conf. Innov. Comput. ICIC 2019, no. January 2020, 2019, doi: 10.1109/ICIC48496.2019.8966691.

A. K. Shrivas and A. Singh, “Classification of breast cancer diseases using data mining techniques,” Int. J. Eng. Sci. …, vol. 5, no. 12, pp. 62–65, 2016, [Online]. Available: https://www.academia.edu/download/51174397/J05120206265.pdf

Y. D. Austria, M. L. Goh, L. Sta. Maria Jr., J.-A. Lalata, J. E. Goh, and H. Vicente, “Comparison of Machine Learning Algorithms in Breast Cancer Prediction Using the Coimbra Dataset,” Int. J. Simul. Syst. Sci. Technol., no. July, 2019, doi: 10.5013/ijssst.a.20.s2.23.

M. I. Cruz and J. Bernardino, “Data Mining Techniques for Early Detection of Breast Cancer.,” in KDIR, 2019, pp. 434–441.

D. M. BrTarigan and D. P. Rini, “Samsuryadi,‘Seleksi Fitur pada Klasifikasi Penyakit Gula Darah Menggunakan Particle Swarm Optimization (PSO) pada Algoritma C4. 5,’ J,” RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 3, pp. 569–575, 2020.

A. K. Mishra, P. Roy, and S. Bandyopadhyay, “Binary particle swarm optimization based feature selection (bpso-fs) for improving breast cancer prediction,” in Proceedings of International Conference on Artificial Intelligence and Applications: ICAIA 2020, Springer, 2021, pp. 373–384.

C. B. C. Latha and S. C. Jeeva, “Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques,” Informatics Med. Unlocked, vol. 16, p. 100203, 2019.

M. A. Al-Barrak and M. Al-Razgan, “Predicting Students Final GPA Using Decision Trees: A Case Study,” Int. J. Inf. Educ. Technol., vol. 6, no. 7, pp. 528–533, 2016, doi: 10.7763/ijiet.2016.v6.745.

S. Sundaramurthy and P. Jayavel, “A hybrid grey wolf optimization and particle swarm optimization with C4. 5 approach for prediction of rheumatoid arthritis,” Appl. Soft Comput., vol. 94, p. 106500, 2020.

H. R. Esmaeel, “Analysis of classification learning algorithms,” Indones. J. Electr. Eng. Comput. Sci., vol. 17, no. 2, pp. 1029–1039, 2020, doi: 10.11591/IJEECS.V17.I2.PP1029-1039.

M. A. Muslim, A. Nurzahputra, and B. Prasetiyo, “Improving accuracy of C4.5 algorithm using split feature reduction model and bagging ensemble for credit card risk prediction,” 2018 Int. Conf. Inf. Commun. Technol. ICOIACT 2018, vol. 2018-Janua, no. 1996, pp. 141–145, 2018, doi: 10.1109/ICOIACT.2018.8350753.

M. I. Aziz, A. Z. Fanani, and A. Affandy, “Analisis Metode Ensemble Pada Klasifikasi Penyakit Jantung Berbasis Decision Tree,” J. Media Inform. Budidarma, vol. 7, no. 1, pp. 1–12, 2023, doi: 10.30865/mib.v7i1.5169.

A. Kadafi and W. Gata, “Particle Swarm Optimization Based C4.5 for Teacher Performance Classification,” pp. 1–12, 2019, doi: 10.4108/eai.18-7-2019.2288586.

A. Saifudin, “Metode data mining untuk seleksi calon mahasiswa pada penerimaan mahasiswa baru di Universitas Pamulang,” J. Teknol., vol. 10, no. 1, pp. 25–36, 2018.

P. Kasih, “Pemodelan Data Mining Decision Tree Dengan Classification Error Untuk Seleksi Calon Anggota Tim Paduan Suara,” Innov. Res. Informatics, vol. 1, no. 2, pp. 63–69, 2019, doi: 10.37058/innovatics.v1i2.918.

A. S. Sunge and A. A. Aditasari, “Penerapan Algoritma C4. 5 Pada Klasifikasi Kelahiran Bayi Prematur Di Desa Setia Mekar,” J. SIGMA, vol. 8, no. 2, pp. 197–206, 2018.

A. Byna and M. Basit, “Penerapan Metode Adaboost Untuk Mengoptimasi Prediksi Penyakit Stroke Dengan Algoritma Naïve Bayes,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 3, pp. 407–411, 2020, doi: 10.32736/sisfokom.v9i3.1023.

Y. Pristyanto, “Penerapan Metode Ensemble Untuk Meningkatkan Kinerja Algoritme Klasifikasi Pada Imbalanced Dataset,” J. Teknoinfo, vol. 13, no. 1, p. 11, 2019, doi: 10.33365/jti.v13i1.184.

T. A. Yoga and Prihandoko, “Penerapan Optimasi Berbasis Particle Swarm Optimization (Pso) Algoritma Naïve Bayes Dan K-Nearest Neighbor Sebagai Perbandingan Untuk Mencari Kinerja Terbaik Dalam Mendeteksi Kanker Payudara,” J. Bangkit Indones., vol. 7, no. 2, p. 1, 2018, [Online]. Available: http://journal.universitasmulia.ac.id/index.php/metik/article/view/62

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Peningkatan Algoritma C4.5 Berbasis PSO Pada Penyakit Kanker Payudara

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.