Peningkatan Algoritma C4.5 Berbasis PSO Pada Penyakit Kanker Payudara
DOI:
https://doi.org/10.30865/mib.v7i4.6841Keywords:
Decision Tree, Breast Cancer Coimbra, Death, PSOAbstract
Onenof the diseases innthe world that causes deathnin women isncancer. Cancernis a diseasencaused by uncontrolled enlargement of abnormal organs in the body. Cancer diagnosis is made using anthropometric data from routine blood analysis. The data used is the Breast Cancer Coimbra Data Set obtained from the UCI Machine Learning Repository. The C4.5 method is andecision treenalgorithm that is often used in the classification process. The selection of the right features, as well as the selectionnof the right method to overcome the class imbalance in the classification process cannimprove the performancenof the C4.5 algorithm. confusion matrix can benused in the Test to determine Classification accuracy. In this research, the application of PSO as a feature organization.References
F. Sardouk, A. D. Duru, and O. Bayat, “Classification of breast cancer using data mining,†Am. Sci. Res. J. Eng. Technol. Sci., vol. 51, no. 1, pp. 38–46, 2019.
M. U. Ghani, T. M. Alam, and F. H. Jaskani, “Comparison of Classification Models for Early Prediction of Breast Cancer,†3rd Int. Conf. Innov. Comput. ICIC 2019, no. January 2020, 2019, doi: 10.1109/ICIC48496.2019.8966691.
A. K. Shrivas and A. Singh, “Classification of breast cancer diseases using data mining techniques,†Int. J. Eng. Sci. …, vol. 5, no. 12, pp. 62–65, 2016, [Online]. Available: https://www.academia.edu/download/51174397/J05120206265.pdf
Y. D. Austria, M. L. Goh, L. Sta. Maria Jr., J.-A. Lalata, J. E. Goh, and H. Vicente, “Comparison of Machine Learning Algorithms in Breast Cancer Prediction Using the Coimbra Dataset,†Int. J. Simul. Syst. Sci. Technol., no. July, 2019, doi: 10.5013/ijssst.a.20.s2.23.
M. I. Cruz and J. Bernardino, “Data Mining Techniques for Early Detection of Breast Cancer.,†in KDIR, 2019, pp. 434–441.
D. M. BrTarigan and D. P. Rini, “Samsuryadi,‘Seleksi Fitur pada Klasifikasi Penyakit Gula Darah Menggunakan Particle Swarm Optimization (PSO) pada Algoritma C4. 5,’ J,†RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 3, pp. 569–575, 2020.
A. K. Mishra, P. Roy, and S. Bandyopadhyay, “Binary particle swarm optimization based feature selection (bpso-fs) for improving breast cancer prediction,†in Proceedings of International Conference on Artificial Intelligence and Applications: ICAIA 2020, Springer, 2021, pp. 373–384.
C. B. C. Latha and S. C. Jeeva, “Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques,†Informatics Med. Unlocked, vol. 16, p. 100203, 2019.
M. A. Al-Barrak and M. Al-Razgan, “Predicting Students Final GPA Using Decision Trees: A Case Study,†Int. J. Inf. Educ. Technol., vol. 6, no. 7, pp. 528–533, 2016, doi: 10.7763/ijiet.2016.v6.745.
S. Sundaramurthy and P. Jayavel, “A hybrid grey wolf optimization and particle swarm optimization with C4. 5 approach for prediction of rheumatoid arthritis,†Appl. Soft Comput., vol. 94, p. 106500, 2020.
H. R. Esmaeel, “Analysis of classification learning algorithms,†Indones. J. Electr. Eng. Comput. Sci., vol. 17, no. 2, pp. 1029–1039, 2020, doi: 10.11591/IJEECS.V17.I2.PP1029-1039.
M. A. Muslim, A. Nurzahputra, and B. Prasetiyo, “Improving accuracy of C4.5 algorithm using split feature reduction model and bagging ensemble for credit card risk prediction,†2018 Int. Conf. Inf. Commun. Technol. ICOIACT 2018, vol. 2018-Janua, no. 1996, pp. 141–145, 2018, doi: 10.1109/ICOIACT.2018.8350753.
M. I. Aziz, A. Z. Fanani, and A. Affandy, “Analisis Metode Ensemble Pada Klasifikasi Penyakit Jantung Berbasis Decision Tree,†J. Media Inform. Budidarma, vol. 7, no. 1, pp. 1–12, 2023, doi: 10.30865/mib.v7i1.5169.
A. Kadafi and W. Gata, “Particle Swarm Optimization Based C4.5 for Teacher Performance Classification,†pp. 1–12, 2019, doi: 10.4108/eai.18-7-2019.2288586.
A. Saifudin, “Metode data mining untuk seleksi calon mahasiswa pada penerimaan mahasiswa baru di Universitas Pamulang,†J. Teknol., vol. 10, no. 1, pp. 25–36, 2018.
P. Kasih, “Pemodelan Data Mining Decision Tree Dengan Classification Error Untuk Seleksi Calon Anggota Tim Paduan Suara,†Innov. Res. Informatics, vol. 1, no. 2, pp. 63–69, 2019, doi: 10.37058/innovatics.v1i2.918.
A. S. Sunge and A. A. Aditasari, “Penerapan Algoritma C4. 5 Pada Klasifikasi Kelahiran Bayi Prematur Di Desa Setia Mekar,†J. SIGMA, vol. 8, no. 2, pp. 197–206, 2018.
A. Byna and M. Basit, “Penerapan Metode Adaboost Untuk Mengoptimasi Prediksi Penyakit Stroke Dengan Algoritma Naïve Bayes,†J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 3, pp. 407–411, 2020, doi: 10.32736/sisfokom.v9i3.1023.
Y. Pristyanto, “Penerapan Metode Ensemble Untuk Meningkatkan Kinerja Algoritme Klasifikasi Pada Imbalanced Dataset,†J. Teknoinfo, vol. 13, no. 1, p. 11, 2019, doi: 10.33365/jti.v13i1.184.
T. A. Yoga and Prihandoko, “Penerapan Optimasi Berbasis Particle Swarm Optimization (Pso) Algoritma Naïve Bayes Dan K-Nearest Neighbor Sebagai Perbandingan Untuk Mencari Kinerja Terbaik Dalam Mendeteksi Kanker Payudara,†J. Bangkit Indones., vol. 7, no. 2, p. 1, 2018, [Online]. Available: http://journal.universitasmulia.ac.id/index.php/metik/article/view/62
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).