Metode MICE Support Vector Machine (MICE-SVM) untuk Klasifikasi Performance Mahasiswa Merdeka Belajar Kampus Merdeka

 (*)Angga Apriano Hermawan Mail (Universitas Dian Nuswantoro, Semarang, Indonesia)
 Galuh Wilujeng Saraswati (Universitas Dian Nuswantoro, Semarang, Indonesia)
 Etika Kartikadarma (Universitas Dian Nuswantoro, Semarang, Indonesia)

(*) Corresponding Author

Submitted: September 21, 2023; Published: October 22, 2023

Abstract

The Ministry of Education and Culture established a Merdeka Belajar Kampus Merdeka (MBKM) program with the aim of improving the competency of student graduates, both soft skills and hard skills, so that they are better prepared and relevant to the needs of the times, preparing graduates as future leaders of the nation who are superior and have personality. However, the MBKM program is not always effective in improving the quality of a student because there are still several shortcomings. It is also felt that some students have not received maximum results when participating in the MBKM program. In fact, not all programs offered by MBKM partners receive an assessment in the form of soft skills scores. The aim of this research is to classify whether the MBKM program influences the performance of MBKM program students by applying the Multivariate Imputation by Chained Equation (MICE) method to overcome missing values in the classification of MBKM student performance at the Faculty of Computer Science, Dian Nuswantoro University. The qualification of MBKM student performance is very important because we need to know whether the program is deemed effective or not to be continued in the future. In this study, researchers used a dataset originating from the MBKM report from students at the Faculty of Computer Science, Dian Nuswantoro University. Researchers obtained data by collecting data from MBKM student certificates and reporting the results. The data taken was 277 pieces for training and 69 pieces for testing. Next, the researchers used the Support Vector Machine (SVM) algorithm for the classification process. The research results show that the performance of the Support Vector Machine (SVM) algorithm model with MICE missing value handling has better accuracy results, with an accuracy value of 98.07% compared to using the Mean Imputation method, which only obtains an accuracy of 97.34%.

Keywords


MICE; Support Vector Machine; Data Mining; Classification; Missing value; MBKM; Education;

Full Text:

PDF


Article Metrics

Abstract view : 248 times
PDF - 60 times

References

N. P. K. Maheni, “Pengaruh Gaya Belajar Dan Lingkungan Teman Sebaya Terhadap Hasil Belajar Mahasiswa Di Jurusan Pendidikan Ekonomi Universitas Pendidikan Ganesha,” J. Pendidik. Ekon. Undiksha, vol. 11, no. 1, p. 85, 2019, doi: 10.23887/jjpe.v11i1.20077.

D. A. Astuti, S. Haryanto, and Y. Prihatni, “Evaluasi implementasi kurikulum 2013,” Wiyata Dharma J. Penelit. dan Eval. Pendidik., vol. 6, no. 1, p. 7, 2018, doi: 10.30738/wd.v6i1.3353.

D. Andrian, P. Titisari, F. Hidayat, and A. Septiawan, “Efektivitas Program MBKM dalam Meningkatkan Kompetensi Mahasiswa Pasca Kampus,” Edukatif J. Ilmu Pendidik., vol. 4, no. 6, pp. 7403–7414, 2022, doi: 10.31004/edukatif.v4i6.4097.

N. Nurhasanah et al., “Identifikasi Pengetahuan Mahasiswa Teknik Industri Terhadap Implementasi Program MBKM dengan Pendekatan Analytical Network Process,” J. Al-AZHAR Indones. SERI SAINS DAN Teknol., vol. 7, no. 2, p. 72, 2022, doi: 10.36722/sst.v7i2.1016.

S. Jurnalis Pipin and H. Kurniawan, “Analisis Sentimen Kebijakan MBKM Berdasarkan Opini Masyarakat di Twitter Menggunakan LSTM,” J. SIFO Mikroskil, vol. 23, no. 2, pp. 197–208, 2022, doi: 10.55601/jsm.v23i2.900.

B. H. B, H. Yustisia, L. Asnur, and U. Verawardina, Proceedings of the Unima International Conference on Social Sciences and Humanities (UNICSSH 2022). Atlantis Press SARL, 2023. doi: 10.2991/978-2-494069-35-0.

M. Universitas, “ISSN 2798-3641 (Online),” vol. 2, no. 2, 2022.

D. Wulandari, N. Febry, A. K. Januvido Hartatmaja, I. Sartika Mangula, and O. Ayu Sabrina, “Evaluasi Implementasi Program Merdeka Belajar Kampus Merdeka (Mbkm) Di Tingkat Program Studi: Studi Di Universitas Paramadina,” Inq. J. Ilm. Psikol., vol. 13, no. 01, 2022, doi: 10.51353/inquiry.v13i01.576.

S. Amalia, M. Panji, and T. Santoso, “Fenomena Sosial Kegiatan Merdeka Belajar Kampus Merdeka Pada Mahasiswa,” vol. 7, pp. 16435–16440, 2023.

N. Nurajijah, D. A. Ningtyas, and M. Wahyudi, “Klasifikasi Siswa Smk Berpotensi Putus Sekolah Menggunakan Algoritma Decision Tree, Support Vector Machine Dan Naive Bayes,” J. Khatulistiwa Inform., vol. 7, no. 2, pp. 85–90, 2019, doi: 10.31294/jki.v7i2.6839.

D. A. Pisner and D. M. Schnyer, Support vector machine. Elsevier Inc., 2019. doi: 10.1016/B978-0-12-815739-8.00006-7.

R. Ratolojanahary, R. Houé Ngouna, K. Medjaher, J. Junca-Bourié, F. Dauriac, and M. Sebilo, “Model selection to improve multiple imputation for handling high rate missingness in a water quality dataset,” Expert Syst. Appl., vol. 131, pp. 299–307, 2019, doi: 10.1016/j.eswa.2019.04.049.

E. Slade and M. G. Naylor, “A fair comparison of tree-based and parametric methods in multiple imputation by chained equations,” Stat. Med., vol. 39, no. 8, pp. 1156–1166, 2020, doi: 10.1002/sim.8468.

M Riski Qisthiano, “Klasifikasi Terhadap Prediksi Kelulusan Mahasiswa Dengan Menggunakan Metode Support Vector Machine (Svm),” Semin. Nas. Teknol. dan Multidisiplin Ilmu, vol. 2, no. 1, pp. 204–208, 2022, doi: 10.51903/semnastekmu.v2i1.170.

L. Li, C. G. Prato, and Y. Wang, “Ranking contributors to traffic crashes on mountainous freeways from an incomplete dataset: A sequential approach of multivariate imputation by chained equations and random forest classifier,” Accid. Anal. Prev., vol. 146, no. January, p. 105744, 2020, doi: 10.1016/j.aap.2020.105744.

K. Srinivasan, N. Mahendran, D. R. Vincent, C. Y. Chang, and S. Syed-Abdul, “Realizing an integrated multistage support vector machine model for augmented recognition of unipolar depression,” Electron., vol. 9, no. 4, 2020, doi: 10.3390/electronics9040647.

A. Amalia, M. S. Lydia, S. D. Fadilla, and M. Huda, “Perbandingan Metode Klaster dan Preprocessing Untuk Dokumen Berbahasa Indonesia,” J. Rekayasa Elektr., vol. 14, no. 1, pp. 35–42, 2018, doi: 10.17529/jre.v14i1.9027.

D. F. Irnawan, I. Hidayah, and L. E. Nugroho, “Metode imputasi pada data debit daerah aliran sungai opak, provinsi di yogyakarta (imputation method on opak watershed data, special region of yogyakarta),” J. Nas. Tek. Elektro dan Teknol. Inf. |, vol. 10, no. 4, pp. 301–310, 2021.

R. S. Utami and D. Danardono, “Metode Multiple Imputation Untuk Mengatasi Kovariat Tak Lengkap Pada Data Kejadian Berulang,” J. Fundam. Math. Appl., vol. 2, no. 2, p. 47, 2019, doi: 10.14710/jfma.v2i2.36.

K. Khairunnas, E. M. Yuniarno, and A. Zaini, “Pembuatan Modul Deteksi Objek Manusia Menggunakan Metode YOLO untuk Mobile Robot,” J. Tek. ITS, vol. 10, no. 1, 2021, doi: 10.12962/j23373539.v10i1.61622.

H. N. Irmanda and Ria Astriratma, “Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 5, pp. 915–922, 2020, doi: 10.29207/resti.v4i5.2313.

A. R. Isnain, A. I. Sakti, D. Alita, and N. S. Marga, “Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm,” J. Data Min. dan Sist. Inf., vol. 2, no. 1, p. 31, 2021, doi: 10.33365/jdmsi.v2i1.1021.

M. R. Faisal and D. T. Nugrahadi, Belajar Data Science Klasifikasi dengan Bahasa Pemrograman R, 1st ed. Banjarbaru: Scripta Cendekia, 2017. [Online]. Available: https://books.google.co.id/books?hl=id&lr=&id=svXUDQAAQBAJ&oi=fnd&pg=PP1&dq=Belajar+Data+Science+Klasifikasi+dengan+Bahasa+Pemrograman+R&ots=0VB7Dta6W8&sig=WE3XGqMD7auj235vmYx-LRXsG40&redir_esc=y#v=onepage&q=Belajar Data Science Klasifikasi dengan Bahasa

L. Qadrini, H. Hikmah, and M. Megasari, “Oversampling, Undersampling, Smote SVM dan Random Forest pada Klasifikasi Penerima Bidikmisi Sejawa Timur Tahun 2017,” J. Comput. Syst. Informatics, vol. 3, no. 4, pp. 386–391, 2022, doi: 10.47065/josyc.v3i4.2154.

M. H. Setiono, “a Komparasi Algoritma Decision Tree, Random Forest, Svm Dan K-Nn Dalam Klasifikasi Kepuasan Penumpang Maskapai Penerbangan,” INTI Nusa Mandiri, vol. 17, no. 1, pp. 32–39, 2022, doi: 10.33480/inti.v17i1.3420.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Metode MICE Support Vector Machine (MICE-SVM) untuk Klasifikasi Performance Mahasiswa Merdeka Belajar Kampus Merdeka

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.