Optimasi SVM dan Decision Tree Menggunakan SMOTE Untuk Mengklasifikasi Sentimen Masyarakat Mengenai Pinjaman Online

 Rismawati Nurul Ikhsani (Universitas Amikom Yogyakarta, Yogyakarta, Indonesia)
 (*)Ferian Fauzi Abdulloh Mail (Universitas Amikom Yogyakarta, Yogyakarta, Indonesia)

(*) Corresponding Author

Submitted: September 19, 2023; Published: October 22, 2023

Abstract

With the development of technology, many applications and social media make it easier for users to do various desires, one of which is borrowing money online on the Online Loan Application with easy terms. The convenience provided causes many violations committed by irresponsible people, such as the breach of important information and data of online loan application users. This causes many people to express their comments and opinions on social media, especially on twitter. Sentiment analysis is conducted to see the tendency of public opinion to fall into negative, neutral, or positive sentiment. Furthermore, public opinion will be classified using two algorithms, namely the Support Vector Machine and Decision Tree algorithms. The aim of this research is to compare the performance of SVM and Decision Tree classification algorithms on the tendency of public opinion on twitter regarding online loans. Furthermore, optimization is carried out using SMOTE to optimize the accuracy of the two algorithms. The results obtained neutral sentiment as much as 78.96%, positive sentiment as much as 14.98%, and negative sentiment as much as 6.06%, people are more inclined to neutral sentiment. Then classification using SVM gets an accuracy of 87% and on Decision Tree gets an accuracy of 89%.. Then to optimize the performance results of the two algorithms, optimization using SMOTE is carried out. After SMOTE optimization, the accuracy produced by SVM is 99% and Decision Tree is 97%. Optimization using SMOTE proves that the SVM algorithm is better than Decision Tree. 

Keywords


SVM; Decision Tree; SMOTE; Sentiment Analysis; Online Loan

Full Text:

PDF


Article Metrics

Abstract view : 928 times
PDF - 729 times

References

T. P. Lestari, “Analisis Text Mining pada Sosial Media Twitter Menggunakan Metode Support Vector Machine (SVM) dan Social Network Analysis (SNA),” J. Inform. Ekon. Bisnis, vol. 4, no. 3, pp. 65–71, 2022, doi: 10.37034/infeb.v4i3.146.

M. R. A. Nasution and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” J. Inform., vol. 6, no. 2, pp. 226–235, 2019, doi: 10.31311/ji.v6i2.5129.

A. Putra and R. Latifah, “Analisis sentimen pengguna Twitter terhadap aplikasi pinjaman online menggunakan metode support vector machine,” Semin. Nas. Penelit. LPPM UMJ, pp. 1–7, 2022, [Online]. Available: http://jurnal.umj.ac.id/index.php/semnaslit

H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, 2021, doi: 10.34148/teknika.v10i1.311.

H. B. Jatmiko, N. Tedi Kurniadi, and D. Maulana, “Optimasi Naïve Bayes Dengan Particle Swarm Optimization Untuk Analisis Sentimen Formula E-Jakarta,” J. Autom. Comput. Inf. Syst., vol. 2, no. 1, pp. 22–30, 2022, doi: 10.47134/jacis.v2i1.35.

T. D. Ramadhan, D. Wahiddin, and E. E. Awal, “Klasifikasi Sentimen Terhadap Pinjaman Online (Pinjol) Menggunakan Algoritma Naive Bayes,” Sci. Student J. Information, Technol. Sci., vol. IV, no. 1, pp. 82–87, 2023, [Online]. Available: www.tripadvisor.com

A. R. Isnain, A. I. Sakti, D. Alita, and N. S. Marga, “Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm,” J. Data Min. dan Sist. Inf., vol. 2, no. 1, p. 31, 2021, doi: 10.33365/jdmsi.v2i1.1021.

M. K. Anam, B. N. Pikir, M. B. Firdaus, S. Erlinda, and Agustin, “Penerapan Na¨ıve Bayes Classifier, K-Nearest Neighbor (KNN) dan.pdf,” Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer, vol. 21, no. 1. p. 139∼150, 2021.

Aditya Quantano Surbakti, Regiolina Hayami, and Januar Al Amien, “Analisa Tanggapan Terhadap Psbb Di Indonesia Dengan Algoritma Decision Tree Pada Twitter,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 2, no. 2, pp. 91–97, 2021, doi: 10.37859/coscitech.v2i2.2851.

F. Romadoni, Y. Umaidah, and B. N. Sari, “Text Mining Untuk Analisis Sentimen Pelanggan Terhadap Layanan Uang Elektronik Menggunakan Algoritma Support Vector Machine,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 2, pp. 247–253, 2020, doi: 10.32736/sisfokom.v9i2.903.

H. Syah and A. Witanti, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (Svm),” J. Sist. Inf. dan Inform., vol. 5, no. 1, pp. 59–67, 2022, doi: 10.47080/simika.v5i1.1411.

O. Irnawati and K. Solecha, “Analisis Sentimen Ulasan Aplikasi Flip Menggunakan Naïve Bayes dengan Seleksi Fitur PSO,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 4, no. 02, pp. 189–199, 2022.

C. Cahyaningtyas, Y. Nataliani, and I. R. Widiasari, “Analisis Sentimen Pada Rating Aplikasi Shopee Menggunakan Metode Decision Tree Berbasis SMOTE,” Aiti, vol. 18, no. 2, pp. 173–184, 2021, doi: 10.24246/aiti.v18i2.173-184.

M. T. Mixue, “Jurnal Indonesia : Manajemen Informatika dan Komunikasi PERBANDINGAN IMPLEMENTASI METODE SMOTE PADA ALGORITMA SUPPORT VECTOR MACHINE ( SVM ) DALAM ANALISIS SENTIMEN OPINI Jurnal Indonesia : Manajemen Informatika dan Komunikasi,” vol. 4, no. 3, pp. 849–855, 2023.

R. T. Aldisa and P. Maulana, “Analisis Sentimen Opini Masyarakat Terhadap Vaksinasi Booster COVID-19 Dengan Perbandingan Metode Naive Bayes, Decision Tree dan SVM,” Build. Informatics, Technol. Sci., vol. 4, no. 1, pp. 106–109, 2022, doi: 10.47065/bits.v4i1.1581.

L. Yusuf and S. Masripah, “SENTIMEN ANALISIS CHATGPT DENGAN ALGORITMA NAÏVE BAYES DAN OPTIMASI PSO,” INTI NUSA MANDIRI, vol. 18, no. 1, pp. 59–64, 2023, doi: 10.33480/inti.v18i1.4230.

F. F. Irfani, “Analisis Sentimen Review Aplikasi Ruangguru Menggunakan Algoritma Support Vector Machine,” JBMI (Jurnal Bisnis, Manajemen, dan Inform., vol. 16, no. 3, pp. 258–266, 2020, doi: 10.26487/jbmi.v16i3.8607.

M. T. Waluyan and K. D. Hartomo, “Analisis Sentimen Kebutuhan Fast Track Pada Originals Vidio Menggunakan Support Vector Machine,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 3, pp. 2153–2162, 2022, doi: 10.35957/jatisi.v9i3.2348.

A. N. Ulfah and M. K. Anam, “Analisis Sentimen Hate Speech Pada Portal Berita Online Menggunakan Support Vector Machine (SVM),” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 1, pp. 1–10, 2020, doi: 10.35957/jatisi.v7i1.196.

S. Styawati, N. Hendrastuty, and A. R. Isnain, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 150–155, 2021, doi: 10.30591/jpit.v6i3.2870.

D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 1–11, 2020, doi: 10.21107/edutic.v7i1.8779.

I. Kurniawan et al., “Perbandingan Algoritma Naive Bayes Dan SVM Dalam Sentimen Analisis Marketplace Pada Twitter,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 10, no. 1, pp. 731–740, 2023, [Online]. Available: https://jurnal.mdp.ac.id/index.php/jatisi/article/view/3582

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.