Penerapan Deep Learning Dalam Pengenalan Endek Bali Menggunakan Convolutional Neural Network
DOI:
https://doi.org/10.30865/mib.v7i4.6721Keywords:
Deep Learning, Convolutional Neural Network, Endek Bali, ResNet50Abstract
Endek Bali has been recognized as one of the Intellectual Property of Traditional Cultural Expressions, with registration number EBT 12.2020.0000085 on December 22, 2020. In the present era, many people find it difficult to distinguish between endek fabric and batik fabric because their patterns are quite similar. This research aims to help identify Bali's Endek fabric based on digital images. One of the approaches used is the Convolutional Neural Network method with ResNet50, which is a deep learning method used to recognize and classify objects in digital images. Evaluation result from testing the best model with new testing model using confession matrix get result of 90,69% accuracy, 90,69% recall, 90,60% precision and 90,68% f1-score. Thus, the model developed in this research demonstrates optimal performance in classifying images of Bali's Endek.References
N. L. W. S. R. Ginantra, “Deteksi Batik Parang Menggunakan Fitur Co-Occurence Matrix Dan Geometric Moment Invariant Dengan Klasifikasi KNN,†Lontar Komputer : Jurnal Ilmiah Teknologi Informasi, p. 40, 2016. doi: 10.24843/lkjiti.2016.v07.i01.p05.
I. Gusti, A. Gede, and A. Kadyanan, “Pengembangan Aplikasi Deep Learning untuk Identifikasi Kain Endek Bali,†Jurnal Ilmu Komputer, vol. 15, no. 1, pp. 32–39, 2020.
S. Febrian Tumewu, D. H. Setiabudi, and I. Sugiarto, “Klasifikasi Motif Batik menggunakan metode Deep Convolutional Neural Network dengan Data Augmentation,†Jurnal INFRA, vol. 8, no. 2, 2020.
I. G. A. G. A. Kadyanan, “Sistem Pengenalan Kain Endek Khas Bali Berdasarkan Fitur Tekstur,†Jurnal Ilmiah Ilmu Komputer Universitas Udayana, vol. 9, no. 2, pp. 38–43, 2018.
C. F. G. Dos Santos and J. P. Papa, “Avoiding Overfitting: A Survey on Regularization Methods for Convolutional Neural Networks,†Association for Computing Machinery, vol. 54, no. 10, 2022. doi: 10.1145/3510413.
P. A. Wicaksana, I. Made Sudarma, and D. C. Khrisne, “Pengenalan Pola Motif Kain Tenun Gringsing Menggunakan Metode Convolutional Neural Network Dengan Model Arsitektur Alexnet,†Jurnal SPEKTRUM, vol. 6, no. 3, 2019.
M. R. Assegaf and A. T. Wibowo, “Klasifikasi Spesies Tanaman Monstera Berdasarkan Citra Daun Menggunakan Metode Convolutional Neural Network (CNN),†e-Proceeding of Engineering, vol. 8, no. 4, 2022.
N. L. W. S. R. Ginantra et al., Machine Learning- Teori dan Metode, 1st ed. 2023.
L. Hakim et al., “Klasifikasi Citra Motif Batik Banyuwangi Menggunakan Convolutional Neural Network,†Jurnal Teknoinfo, vol. 17, no. 1, pp. 203–211, 2023.
M. Siahaan, C. Harsana Jasa, K. Anderson, M. V. Rosiana, S. Lim, and W. Yudianto, “Penerapan Artificial Intelligence (AI) Terhadap Seorang Penyandang Disabilitas Tunanetra,†Journal of Information System and Technology, vol. 01, pp. 186–193, 2020.
J. Sanjaya and M. Ayub, “Augmentasi Data Pengenalan Citra Mobil Menggunakan Pendekatan Random Crop, Rotate, dan Mixup,†Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 2, 2020. doi: 10.28932/jutisi.v6i2.2688.
A. Roihan, P. Abas Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,†IJCIT (Indonesian Journal on Computer and Information Technology), vol. 5, no. 1, pp. 75–82, 2019.
A. Julianto, A. Sunyoto, D. Ferry, and W. Wibowo, “Optimasi Hyperparameter Convolutional Neural Network Untuk Klasifikasi Penyakit Tanaman Padi,†Jurnal Teknimedia, vol. 3, no. 2, 2022.
C. P. Yanti et al., “Perbandingan Metode K-NN Dan Metode Random Forest Untuk Analisis Sentimen pada Tweet Isu Minyak Goreng di Indonesia,†Jurnal Media Informatika Budidarma, vol. 7, no. 2, pp. 756–765, 2023. doi: 10.30865/mib.v7i2.5900.
C. Raras, A. Widiawati, and P. Korespondensi, “Pengaruh Dataset Terhadap Performa Convolutional Neural Network Pada Klasifikasi X-Ray Pasien Covid-19,†Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 9, no. 6, pp. 1109–1118, 2022. doi: 10.25126/jtiik.202295645.
S. N. Rahmawati, E. W. Hidayat, and H. Mubarok, “Implementasi Deep Learning Pada Pengenalan Aksara Sunda Menggunakan Metode Convolutional Neural Network,†INSERT: Information System and Emerging Technology Journal, vol. 2, no. 1, 2021.
R. Z. Fadillah, A. Irawan, M. Susanty, and I. Artikel, “Data Augmentasi Untuk Mengatasi Keterbatasan Data Pada Model Penerjemah Bahasa Isyarat Indonesia (BISINDO),†Jurnal Informatika, vol. 8, no. 2, 2021.
J. Sanjaya and M. Ayub, “Augmentasi Data Pengenalan Citra Mobil Menggunakan Pendekatan Random Crop, Rotate, dan Mixup,†Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 2, Aug. 2020. doi: 10.28932/jutisi.v6i2.2688.
D. Putri and A. Dkk, “Augmentasi Data Pada Implementasi Convolutional Neural Network Arsitektur Efficientnet-B3 Untuk Klasifikasi Penyakit Daun Padi,†Jurnal Sistem Informasi, vol. 5, no. 2, pp. 239–249, 2023.
A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation,†Journal of Applied Informatics and Computing (JAIC), vol. 4, no. 1, p. 45, 2020.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).