Analisis Perbandingan Pembelajaran Online Dan Offline Terhadap Mahasiswa UIN SUSKA Riau Menggunakan Naive Bayes
Abstract
Online lectures have become a common method used in education to deliver course materials to students. However, the exucution of Online lectures is not always smooth and often faces various challenges. One of the main issues is the limited internet access frequently experienced by students, particularly in regions where internet connectivity is limied, making it difficult for them to parcipate in lecturesnseamlessly. Addtionally, some students encounter difficulties in time management and self-motivation for independent learning. This research aims to analyst the conditions and issues that arise during the implementation of Online lectures and compare them with the traditional Offline lecture delivery at UIN SUSKA Riau. The Naïve Bayes algorithm is applied for the analysis, with a focus on Accuracy, Precision, Sensitivity, and specificity. The findings and analysis using this algorithm demonstrate a remarkable accuracy rate of 66,67%, precision rate of 70%, sensitivity rate of 77,78% and specificity rate of 50%. By looking at the results obtained, the Naïve Bayes method was successfully used in analyzing comparisons of Online and Offline learning for students of UIN SUSKA Riau.
Keywords
Full Text:
PDFArticle Metrics
Abstract view : 473 timesPDF - 283 times
References
N. Kurniasih and P. Siahaan, “PENERAPAN COOPERATIVE LEARNING TIPE TPSQ UNTUK MENGOPTIMALKAN KEMAMPUAN MEMBUAT PETA KONSEP DAN PRESTASI BELAJAR SISWA KELAS VIII PADA MATERI OPTIK,” vol. 4, no. 2, pp. 127–133, 2019.
R. D. Noviyanti, D. P. D. Kusudaryati, and D. Luthfianto, “Analisis Perbandingan Perkuliahan Teori Secara Daring dan Luring pada Mahasiswa Prodi S1 Gizi ITS PKU Muhammadiyah Surakarta pada Masa Pandemi Covid 19,” Urecol Journal. Part A: Education and Training, vol. 1, no. 1, pp. 28–35, 2021, doi: 10.53017/ujet.22.
A. T. Gloster, D. Lamnisos, J. Lubenko, and V. Presti, G., Squatrito, “Impact of covid-19 pandemic on mental health: An international study,” PLoS One, vol. 15, no. 12, 2020, doi: e0244809.
S. Tadesse and W. Muluye, “The impact of covid-19 pandemic on education system in developing countries: a review,” Open J Soc Sci, vol. 8, no. 10, pp. 159–170, 2020.
R. E. Pratama and S. Mulyati, “Pembelajaran daring dan luring pada masa pandemi covid-19,” Gagasan Pendidikan Indonesia, vol. 1, no. 2, pp. 49–59, 2020.
A. C. Aulia, “Perbandingan Pembelajaran Kuliah Online dan Offline Pada Masa Pandemi COVID-19 Menggunakan Metode Naive Bayes dan Metode C4.5,” Perpustakaan Universitas Jember, May 22, 2022.
R. D. Noviyanti, D. P. D. Kusudaryati, and D. Luthfianto, “Analisis Perbandingan Perkuliahan Teori Secara Daring dan Luring pada Mahasiswa Prodi S1 Gizi ITS PKU Muhammadiyah Surakarta pada Masa Pandemi Covid 19,” Urecol Journal. Part A: Education and Training, vol. 1, no. 1, pp. 28–35, Apr. 2021, doi: 10.53017/ujet.22.
R. Rachman, R. N. Handayani, and I. Artikel, “Klasifikasi Algoritma Naive Bayes Dalam Memprediksi Tingkat Kelancaran Pembayaran Sewa Teras UMKM,” JURNAL INFORMATIKA, vol. 8, no. 2, 2021.
H. D. Wijaya and S. Dwiasnati, “Implementasi Data Mining Dengan Algo- Ritma Na¨Ive Bayes Pada Penjualan Obat,” Jurnal Informatika, vol. 7, no. 1, pp. 1–7, 2020.
F. Widyahastuti and V. U. Tjhin, “Performance Prediction in Online Discussion Forum: State-of-the-art and comparative analysis,” in Procedia Computer Science, Elsevier B.V., 2018, pp. 302–314. doi: 10.1016/j.procs.2018.08.178.
Y.-C. Zhang and L. Sakhanenko, “The naive Bayes classifier for functional data,” Statistics & Probability Letters, vol.152, p.137-147, Sept.2019, doi: 10.1016/j.spl.2019.04.017
J. Mittelmeier et al., “‘A double-edged sword. This is powerful but it could be used destructively’: Perspectives of early career education researchers on learning analytics,” Frontline Learn Res, vol. 6, no. 2, pp. 20–38, 2018, doi: 10.14786/flr.v6i2.348.
A. J. Firdausi, “Perbandingan Algoritma Klasifikasi SVM dan Naive Bayes Dalam Analisis Sentimen Pembelajaran Daring di Masa Pandemi COVID-19 di Twitter.” eProceedings of Engineering, vol. 9, no. 3, p. 2065, Jun 2022.
S. Maskar, P. Sukma Dewi, and N. D. Puspaningtyas, “Online Learning & Blended Learning: Perbandingan Hasil Belajar Metode Daring Penuh dan Terpadu,” Prisma, vol. 9, no. 2, p. 154-166, Des 2020
A. Triayudi and G. Soepriyono, “Penerapan Data Mining Untuk Mengukur Kepuasan Mahasiswa Terhadap Pembelajaran dengan Menggunakan Algoritma Naïve Bayes,” Journal of Computer System and Informatics (JoSYC), vol. 4, no.1, p. 39-44, Nov 2022, doi: 10.47065/josyc.v4i1.2524.
P. Studi, “ANALISIS SENTIMEN UNTUK PEMERINGKATAN POPULARITAS SITUS BELANJA ONLINE DI INDONESIA MENGGUNAKAN METODE NAIVE BAYES (STUDI KASUS DATA SEKUNDER) TUGAS AKHIR,” 2019.
Astuti, Y., Wulandari, I. R., Putra, A. R., & Kharomadhona, N. “Naïve Bayes untuk Prediksi Tingkat Pemahaman Kuliah Online Terhadap Mata Kuliah Algoritma Struktur Data,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 8, no. 1, p. 28-32, Apr.2022.
I. Rodliyah et al., “Comparison of Offline, Semi Offline, and Online Learning Systems On the Learning Outcomes of the Numerical Method Course,” Jurnal Axioma : Jurnal Matematika dan Pembelajaran, vol. 7, no. 2, 2022.
R. D. Noviyanti, D. P. D. Kusudaryati, and D. Luthfianto, “Analisis Perbandingan Perkuliahan Teori Secara Daring dan Luring pada Mahasiswa Prodi S1 Gizi ITS PKU Muhammadiyah Surakarta pada Masa Pandemi Covid 19,” Urecol Journal. Part A: Education and Training, vol. 1, no. 1, pp. 28–35, Apr. 2021, doi: 10.53017/ujet.22.
H. Setiawan, E. Utami, and S. Sudarmawan, “Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Algoritma Support Vector Machine dan Naive Bayes,” Jurnal Komtika (Komputasi dan Informatika), vol. 5, no. 1, pp. 43–51, Jul. 2021, doi: 10.31603/komtika.v5i1.5189.
W. A. Prabowo and C. Wiguna, “Sistem Informasi UMKM Bengkel Berbasis Web Menggunakan Metode SCRUM,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 1, p. 149, Jan. 2021, doi: 10.30865/mib.v5i1.2604.
T. Wiratama Putra and A. Triayudi, “Analisis Sentimen Pembelajaran Daring menggunakan Metode Naïve Bayes, KNN, dan Decision Tree,” Jurnal Teknologi Informasi dan Komunikasi), vol. 6, no. 1, p. 2022, 2022, doi: 10.35870/jti.
E. Ramadhanta, M. Razaq, D. W. Jacob, and F. Hamami, “Analisis Sentimen Kepuasan Mahasiswa Terhadap Pembelajaran Online Selama Pandemi Covid-19 Pada Media Sosial Twitter Menggunakan Perbandingan Algoritma Klasifikasi Analysis Of Student Satisfaction Sentiment Towards Online Learning During The Covid-19 Pandemic On Social Media Twitter Using Comparison Of Classification Algorithms.” e-Proceeding of Engineering: Vol.8, No.5 Oktober 2021, ISSN: 2355-9365
P. Badwane and S. Kasliwal, “TO STUDY ON ONLINE-OFFLINE EXAMINATION PARADOX POST COVID-19.” IEJRD – International Multidisciplinary Jurnal, Vol. 7, no. MGM IOMR&R, p.12, Jun 2022.
Wulandari T., Agrita W.T., & Hidayatullah K, “Analisis Perbandingan Perkuliahan Online dan Offline Terhadap Mahasiswa STKIP Muhammadiyah Muara Bungo,” In Proceeding National Conference: Education, Social, Science, and Humaniora, Vol. 2, No. 1, pp. 64-68, 29 Des 2020.
N. Akbar Rozaq Rais, “ANALISIS PERAN TEKNOLOGI SISTEM INFORMASI DALAM PEMBELAJARAN KULIAH DIMASA PANDEMI VIRUS CORONA, “Proceeding Semin. Nas. Call Pap., vol. 3, no. 1, pp. 157–168, 2020.
N. A. Akhmad, “Analisis Respon Mahasiswa Terhadap Perkuliahan Daring Di Prodi Biologi Stkip Pi Makassar
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA
This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com
This work is licensed under a Creative Commons Attribution 4.0 International License.