Perbandingan Kinerja Algoritma Clustering Data Mining Untuk Prediksi Harga Saham Pada Reksadana dengan Davies Bouldin Index

 Gatot Soepriyono (Universitas Nasional, Jakarta, Indonesia)
 (*)Agung Triayudi Mail (Universitas Nasional, Jakarta, Indonesia)

(*) Corresponding Author

Submitted: August 5, 2023; Published: October 31, 2023

Abstract

Mutual funds are a container that can be used to accommodate funds from the public which will later be distributed to the owners of the company. The ease of investing in share prices cannot be separated from the ease of obtaining information. The share price that is very popular with the public is the share price for banks, whether privately owned or government owned. However, even though banks are very close and popular with capital market players, this does not rule out the possibility of a decline in share prices. This problem is not a problem that can be considered trivial and ignored, if you continuously experience losses from the capital market it will certainly give rise to distrust or a lack of interest in the public to participate in investing in companies. Predictions for stock prices must be done well and correctly and get accurate results, therefore it is necessary to use a special technique or method to help carry out the prediction process until results are obtained with a good level of accuracy. The expected prediction process is in line with the concept of data mining. The process of applying clustering for predictions is also considered very suitable, this is because in stock prices there is no target class for each data. The K-Means algorithm and K-Medoids algorithm are part of cluster data mining to be used to make predictions based on cluster formation. The purpose of the comparison is to get more reliable results, where these results can be seen from better algorithm performance. The performance measurement process for the K-Means and K-Medoids algorithms will later be assessed based on the Davies Bouldin Index (DBI). The results of the research show that the performance results of the K-Means algorithm are better than the K-Medoids algorithm. This is proven by the DBI value obtained from the K-Means algorithm being no more than 0.6, while in the K-Medoids algorithm the DBI value obtained is up to 5.822. Overall, each stock data has an optimal cluster based on the clustering process with the K-Means algorithm. The optimal cluster results in BMRI stock data, the optimal cluster is at K=4 with a DBI value of 0.501. In the BBNI stock data, the optimal cluster is at K=4 with a DBI value of 0.500. In the BBCA stock data, the optimal cluster is at K=3 with a DBI value of 0.441. In the BNGA stock data, the optimal cluster is at K=2 with a DBI value of 0.263. In the BDMN stock data the optimal cluster is at K=2 with a DBI value of 0.028 and in the MEGA stock data the optimal cluster is at K=4 with a DBI value of 0.353.

Keywords


Performance Comparison; Clustering; Data Mining; Stock Price Prediction; Davies Bouldin Index

Full Text:

PDF


Article Metrics

Abstract view : 585 times
PDF - 262 times

References

F. Pirmansyah and T. Wahyudi, “IMPLEMENTASI DATA MINING MENGGUNAKAN ALGORITMA C4.5 UNTUK PREDIKSI EVALUASI ANGGOTA SATUAN PENGAMANAN STUDI KASUS PT. YIMM PULOGADUNG,” J. Indones. Manaj. Inform. dan Komun., vol. 4, no. 2, pp. 540–551, 2023.

A. P. Adistya, N. Lutfiyani, P. Tara, Rifaldi, R. Adriyan, and P. Rosyani, “Klasterisasi Menggunakan Algoritma K-Means Clustering Untuk Memprediksi Kelulusan Mata Kuliah Mahasiswa,” OKTAL J. Ilmu Komput. dan Sci., vol. 2, no. 8, pp. 2301–2306, 2023.

E. P. Priambodo and A. Jananto, “Perbandingan Analisis Cluster Algoritma K-Means Dan AHC Dalam Perencanaan Persediaan Barang Pada Perusahaan Manufaktur,” Progresif J. Ilm. Komput., vol. 18, no. 2, p. 257, 2022, doi: 10.35889/progresif.v18i2.868.

F. Harahap, “Perbandingan Algoritma K Means dan K Medoids Untuk Clustering Kelas Siswa Tunagrahita,” TIN Terap. Inform. Nusant., vol. 2, no. 4, pp. 191–197, 2021.

Imawati, Arta, and Nugraha, “PREDIKSI PEMAKAIAN SPARE PART DENGAN ALGORITMA K-MEANS DI CV. XYZ,” J. Teknol. Inf. dan Komput., vol. 9, no. 1, pp. 143–150, 2023.

F. P. Dewi, P. S. Aryni, and Y. Umaidah, “Implementasi Algoritma K-Means Clustering Seleksi Siswa Berprestasi Berdasarkan Keaktifan dalam Proses Pembelajaran,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 7, no. 2, pp. 111–121, 2022, doi: 10.14421/jiska.2022.7.2.111-121.

S. Hartati and H. A. SAN, “Algoritma Naive Bayes untuk Prediksi Kelulusan Mahasiswa,” J. Cakrawala Inf., vol. 2, no. 2, pp. 42–50, 2022, doi: 10.54066/jci.v2i2.234.

M. F. Al Halik and L. Septiana, “Analisa Data Untuk Prediksi Daerah Rawan Bencana Alam Di Jawa Barat Menggunakan Algoritma K-Means Clustering,” J. Inf. Syst. Applied, Manag. Account. Res., vol. 6, no. 4, pp. 856–870, 2022, doi: 10.52362/jisamar.v6i4.939.

L. Nurhalimah, T. I. Hermanto, and I. Kaniawulan, “Analisis Prediksi Mood Genre Musik Pop Menggunakan Algoritma K-Means dan C4.5,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 1006, 2022, doi: 10.30865/jurikom.v9i4.4597.

A. Khaerunnisa, “Analisis Tingkat Kelulusan Mahasiswa di Unisba dengan menggunakan Algoritma K-Means Clustering,” J. Ris. Mat., pp. 67–76, 2022, doi: 10.29313/jrm.v2i1.1018.

D. Hediyati and I. M. Suartana, “Penerapan Principal Component Analysis (PCA) Untuk Reduksi Dimensi Pada Proses Clustering Data Produksi Pertanian Di Kabupaten Bojonegoro,” J. Inf. Eng. Educ. Technol., vol. 5, no. 2, pp. 49–54, 2021, doi: 10.26740/jieet.v5n2.p49-54.

S. A. Rajagukguk, “Tinjauan pustaka sistematis: Prediksi prestasi belajar peserta didik dengan algoritma pembelajaran mesin,” J. SNATi, vol. 1, no. 1, pp. 22–30, 2021.

R. Kurniawan, S. Defit, and S. Sumijan, “Prediksi Tingkat Kerugian Peternak Akibat Penyakit pada Sapi Menggunakan Algoritma K-Means Clustering,” J. Inf. dan Teknol., vol. 3, 2020, doi: 10.37034/jidt.v3i1.87.

A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,” J. Tekno Kompak, vol. 15, no. 2, p. 25, 2021, doi: 10.33365/jtk.v15i2.1162.

S. N. Br Sembiring, H. Winata, and S. Kusnasari, “Pengelompokan Prestasi Siswa Menggunakan Algoritma K-Means,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 1, no. 1, p. 31, 2022, doi: 10.53513/jursi.v1i1.4784.

S. W. Harjono, N. Widya Utami, I. Gusti, A. Pramesti, and D. Putri, “Klasterisasi Tingkat Penjualan pada Startup Panak.id dengan Algoritma K-Means,” J. Ilm. Teknol. Inf. Asia, vol. 17, no. 1, pp. 55–66, 2023.

A. A. D. Sulistyawati and M. Sadikin, “Penerapan Algoritma K-Medoids Untuk Menentukan Segmentasi Pelanggan,” Sistemasi, vol. 10, no. 3, p. 516, 2021, doi: 10.32520/stmsi.v10i3.1332.

D. R. Agustian and B. A. Darmawan, “Analisis Clustering Demam Berdarah Dengue Dengan Algoritma K-Medoids (Studi Kasus Kabupaten Karawang),” JIKO (Jurnal Inform. dan Komputer), vol. 6, no. 1, p. 18, 2022, doi: 10.26798/jiko.v6i1.504.

D. S. M. Simanjuntak, I. Gunawan, S. Sumarno, P. Poningsih, and I. P. Sari, “Penerapan Algoritma K-Medoids Untuk Pengelompokkan Pengangguran Umur 25 tahun Keatas Di Sumatera Utara,” J. Krisnadana, vol. 2, no. 2, 2023, doi: 10.58982/krisnadana.v2i2.264.

D. Marlina and M. Bakri, “Penerapan Data Mining Untuk Memprediksi Transaksi Nasabah Dengan Algoritma C4.5,” J. Teknol. dan Sist. Inf., vol. 2, no. 1, pp. 23–28, 2021.

A. Yudhistira, A. A. Aldino, and D. Darwis, “Analisis Klasterisasi Penilaian Kinerja Pegawai Menggunakan Metode Fuzzy C-Means (Studi Kasus : Pengadilan Tinggi Agama bandar lampung),” J. Ilm. Edutic Pendidik. dan Inform., vol. 9, no. 1, pp. 77–82, 2022, doi: 10.21107/edutic.v9i1.17134.

Dewi Eka Putri and Eka Praja Wiyata Mandala, “Hybrid Data Mining berdasarkan Klasterisasi Produk untuk Klasifikasi Penjualan,” J. KomtekInfo, vol. 9, pp. 68–73, 2022, doi: 10.35134/komtekinfo.v9i2.279.

Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI.

T. Hartati, O. Nurdiawan, and E. Wiyandi, “Analisis Dan Penerapan Algoritma K-Means Dalam Strategi Promosi Kampus Akademi Maritim Suaka Bahari,” J. Sains Teknol. Transp. Marit., vol. 3, no. 1, pp. 1–7, 2021, doi: 10.51578/j.sitektransmar.v3i1.30.

Sekar Setyaningtyas, B. Indarmawan Nugroho, and Z. Arif, “Tinjauan Pustaka Sistematis: Penerapan Data Mining Teknik Clustering Algoritma K-Means,” J. Teknoif Tek. Inform. Inst. Teknol. Padang, vol. 10, no. 2, pp. 52–61, 2022, doi: 10.21063/jtif.2022.v10.2.52-61.

J. Faran and R. T. Aldisa, “Penerapan Data Mining Untuk Penjurusan Kelas dengan Menggunakan Algoritma K-Medoids,” Build. Informatics, Technol. Sci., vol. 5, no. 2, pp. 543–552, 2023, doi: 10.47065/bits.v5i2.4313.

N. Widiawati, B. N. Sari, and T. N. Padilah, “Clustering Data Penduduk Miskin Dampak Covid-19 Menggunakan Algoritma K-Medoids,” J. Appl. Informatics Comput., vol. 6, no. 1, pp. 55–63, 2022, doi: 10.30871/jaic.v6i1.3266.

Y. Diana and F. Hadi, “Analisa Penjualan Menggunakan Algoritma K-Medoids Untuk Mengoptimalkan Penjualan Barang,” J. Inf. Syst. Informatics Eng. Vol., vol. 7, no. 1, pp. 97–103, 2023.

M. Sholeh and K. Aeni, “Perbandingan Evaluasi Metode Davies Bouldin, Elbow dan Silhouette pada Model Clustering dengan Menggunakan Algoritma K-Means,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 8, no. 1, p. 56, 2023, doi: 10.30998/string.v8i1.16388.

I. W. Septiani, A. C. Fauzan, and M. M. Huda, “Implementasi Algoritma K-Medoids Dengan Evaluasi Davies-Bouldin-Index Untuk Klasterisasi Harapan Hidup Pasca Operasi Pada Pasien Penderita Kanker Paru-Paru,” J. Sist. Komput. dan Inform., vol. 3, no. 4, p. 556, 2022, doi: 10.30865/json.v3i4.4055.

A. A. Az-zahra, A. F. Marsaoly, I. P. Lestyani, R. Salsabila, and W. O. Z. Madjida, “Penerapan Algoritma K-Modes Clustering Dengan Validasi Davies Bouldin Index Pada Pengelompokkan Tingkat Minat Belanja Online Di Provinsi Daerah Istimewa Yogyakarta,” J. MSA ( Mat. dan Stat. serta Apl. ), vol. 9, no. 1, p. 24, 2021, doi: 10.24252/msa.v9i1.18555.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.