Analisis Komparatif Kinerja Algoritma Machine Learning untuk Deteksi Stunting

 Syahrani Lonang (Universitas Ahmad Dahlan, Yogyakarta, Indonesia)
 (*)Anton Yudhana Mail (Universitas Ahmad Dahlan, Yogyakarta, Indonesia)
 Muhammad Kunta Biddinika (Universitas Ahmad Dahlan, Yogyakarta, Indonesia)

(*) Corresponding Author

Submitted: July 16, 2023; Published: October 31, 2023


Stunting is a serious problem caused by chronic malnutrition in children under five, causing stunted growth and having a negative impact on long-term health and productivity. Therefore, early detection of stunting is very important to reduce its negative impacts. Previous studies utilizing machine learning have proven the success of this method in various health applications, such as disease detection and the prediction of medical conditions. The results of this research are a comparative evaluation of five classifications, namely Logistic Regression, Decision Tree, Random Forest, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM), in classifying stunted toddlers. The dataset used contains four important attributes: age, gender, weight, and height of toddlers, as well as a binary class label that differentiates between toddlers who are stunted and those who are not. The evaluation results show that KNN at K = 3 produces the highest accuracy of 94.85%, making it the best model for classifying stunting in toddlers. Apart from accuracy, other metrics such as precision, recall, and F1-score are used to analyze the algorithm's ability to solve this problem. KNN stands out as the best model, with the highest F1-score of 89.47%. KNN also manages to maintain a balance between precision and recall, making it an excellent choice for treating stunting in toddlers. Apart from that, the use of the AUC metric from the ROC curve also shows the superiority of KNN in differentiating between stunted and non-stunting toddlers. With a combination of consistent evaluation results, both in terms of accuracy and other evaluation metrics, this research proves that KNN is the best choice for overcoming the task of classifying stunting in toddlers.


Machine Learning; Decision Tree; Random Forest; K-Nearest Neighbor; Logistic Regression; Stunting

Full Text:


Article Metrics

Abstract view : 254 times
PDF - 44 times


TNP2K, “100 Kabupaten/Kota Prioritas untuk Intervensi Anak Kerdil (Stunting): Tim Nasional Percepatan Penanggulangan Kemiskinan,” Jakarta, vol. 2, no. c, p. 287, 2021, [Online]. Available: Ringkasan

S. Lonang and D. Normawati, “Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination,” J. MEDIA Inform. BUDIDARMA, vol. 6, no. 1, p. 49, Jan. 2022, doi: 10.30865/mib.v6i1.3312.

K. L. Perdue et al., “Using functional near-infrared spectroscopy to assess social information processing in poor urban Bangladeshi infants and toddlers,” Dev. Sci., vol. 22, no. 5, 2019, doi: 10.1111/desc.12839.

S. Lonang, A. Yudhana, and M. K. Biddinika, “Rancangan Sistem Klasifikasi Kekurangan Gizi Balita Dengan Metode K-Nearest Neighbor,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 5, no. 1, p. 73, Mar. 2023, doi: 10.36499/jinrpl.v5i1.7834.

D. Sudigyo, A. A. Hidayat, R. Nirwantono, R. Rahutomo, J. P. Trinugroho, and B. Pardamean, “Literature study of stunting supplementation in Indonesian utilizing text mining approach,” Procedia Comput. Sci., vol. 216, no. 2022, pp. 722–729, 2023, doi: 10.1016/j.procs.2022.12.189.

H. Abbad Ur Rehman, C. Y. Lin, and Z. Mushtaq, “Effective K-Nearest Neighbor Algorithms Performance Analysis of Thyroid Disease,” J. Chinese Inst. Eng. Trans. Chinese Inst. Eng. A, vol. 44, no. 1, pp. 77–87, 2021, doi: 10.1080/02533839.2020.1831967.

L. A. Al Hak, “Diabetes Prediction Using Binary Grey Wolf Optimization and Decision Tree,” Int. J. Comput., vol. 21, no. 4, pp. 489–494, 2022, doi: 10.47839/ijc.21.4.2785.

D. A. Salem and E. M. Hashim, “Impact of Data Pre-Processing on Covid-19 Diagnosis Using Machine Learning Algorithms,” Orig. Res. Pap. Int. J. Intell. Syst. Appl. Eng. IJISAE, vol. 2023, no. 1s, pp. 164–171, 2023, [Online]. Available:

S. Lonang, A. Yudhana, and M. K. Biddinika, “Performance Analysis for Classification of Malnourished Toddlers Using K-Nearest Neighbor,” Sci. J. Informatics, vol. 10, no. 3, p. 313, 2023, [Online]. Available:

N. M. Mathkunti and S. Rangaswamy, “Machine Learning Techniques to Identify Dementia,” SN Comput. Sci., vol. 1, no. 3, p. 118, May 2020, doi: 10.1007/s42979-020-0099-4.

S. Ndagijimana, I. H. Kabano, E. Masabo, and J. M. Ntaganda, “Prediction of Stunting among Under-5 Children in Rwanda Using Machine Learning Techniques,” J. Prev. Med. Public Heal., vol. 56, no. 1, pp. 41–49, 2023, doi: 10.3961/jpmph.22.388.

R. Kaur, “Predicting diabetes by adopting classification approach in data mining,” Int. J. Informatics Vis., vol. 3, no. 2–2, pp. 218–221, 2019, doi: 10.30630/joiv.3.2-2.229.

N. Zamri et al., “River quality classification using different distances in k-nearest neighbors algorithm,” Procedia Comput. Sci., vol. 204, no. 2021, pp. 180–186, 2022, doi: 10.1016/j.procs.2022.08.022.

V. Çetin and O. Yıldız, “A comprehensive review on data preprocessing techniques in data analysis,” Pamukkale Univ. J. Eng. Sci., vol. 28, no. 2, pp. 299–312, 2022, doi: 10.5505/pajes.2021.62687.

V. Werner de Vargas, J. A. Schneider Aranda, R. dos Santos Costa, P. R. da Silva Pereira, and J. L. Victória Barbosa, “Imbalanced data preprocessing techniques for machine learning: a systematic mapping study,” Knowl. Inf. Syst., vol. 65, no. 1, pp. 31–57, 2023, doi: 10.1007/s10115-022-01772-8.

C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, “A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data,” Front. Energy Res., vol. 9, Mar. 2021, doi: 10.3389/fenrg.2021.652801.

J. Goyal, P. Khandnor, and T. C. Aseri, “A Comparative Analysis of Machine Learning classifiers for Dysphonia-based classification of Parkinson’s Disease,” International Journal of Data Science and Analytics, vol. 11, no. 1. pp. 69–83, 2021. doi: 10.1007/s41060-020-00234-0.

F. D. Adhinata and A. Junaidi, “Gender Classification on Video Using FaceNet Algorithm and Supervised Machine Learning,” Int. J. Comput. Digit. Syst., vol. 11, no. 1, pp. 199–208, Jan. 2022, doi: 10.12785/ijcds/110116.

N. Bin Noor, M. S. Anwar, and M. Dey, “Comparative Study Between Decision Tree, SVM and KNN to Predict Anaemic Condition,” in 2019 IEEE International Conference on Biomedical Engineering, Computer and Information Technology for Health (BECITHCON), IEEE, Nov. 2019, pp. 24–28. doi: 10.1109/BECITHCON48839.2019.9063188.

A. Ali, S. Naeem, S. Anam, and M. M. Ahmed, “A Supervised Machine Learning Algorithms: Applications, Challenges, and Recommendations,” pp. 1–10, 2023

S. Lonang, A. Yudhana, and M. K. Biddinika, “Performance Analysis for Classification of Malnourished Toddlers Using K-Nearest Neighbor,” Sci. J. Informatics, vol. 10, no. 3, p. 313, 2023, doi: 10.15294/sji.v10i3.45196.

A. G. Pertiwi, N. Bachtiar, R. Kusumaningrum, I. Waspada, and A. Wibowo, “Comparison of performance of k-nearest neighbor algorithm using smote and k-nearest neighbor algorithm without smote in diagnosis of diabetes disease in balanced data,” J. Phys. Conf. Ser., vol. 1524, no. 1, p. 012048, Apr. 2020, doi: 10.1088/1742-6596/1524/1/012048.

Y. Xi, M. Bi, M. Xin, C. Wang, J. Yu, and W. Hu, “Simplified SVM Equalization Algorithm Based on Single Hyperplane Training Enabled 50Gb/s PAM-4/8 With 10-G Optics in NG-PON System,” IEEE Photonics J., vol. 13, no. 4, pp. 1–7, Aug. 2021, doi: 10.1109/JPHOT.2021.3103195.

A. Peryanto, A. Yudhana, and R. Umar, “Convolutional Neural Network and Support Vector Machine in Classification of Flower Images,” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 8, no. 1, pp. 1–7, Mar. 2022, doi: 10.23917/khif.v8i1.15531.

R. A. Gulhane and S. R. Gupta, “Machine Learning Approach for Early Disease Prediction and Risk Analysis,” Int. J. Intell. Syst. Appl. Eng., vol. 10, no. 3s, pp. 27–32, 2022.

B. Sahu, S. Mohanty, and S. Rout, “A Hybrid Approach for Breast Cancer Classification and Diagnosis,” ICST Trans. Scalable Inf. Syst., vol. 6, no. 20, p. 156086, Jul. 2018, doi: 10.4108/eai.19-12-2018.156086.

A. Vanacore, M. S. Pellegrino, and A. Ciardiello, “Fair evaluation of classifier predictive performance based on binary confusion matrix,” Comput. Stat., Nov. 2022, doi: 10.1007/s00180-022-01301-9.

P. Singh, N. Singh, K. K. Singh, and A. Singh, “Diagnosing of disease using machine learning,” Mach. Learn. Internet Med. Things Healthc., pp. 89–111, 2021, doi: 10.1016/B978-0-12-821229-5.00003-3.

J. Y. Ho et al., “Towards a time and cost effective approach to water quality index class prediction,” J. Hydrol., vol. 575, pp. 148–165, 2019, doi: 10.1016/j.jhydrol.2019.05.016.

V. Kumar, G. S. Lalotra, and R. K. Kumar, “Improving performance of classifiers for diagnosis of critical diseases to prevent COVID risk,” Comput. Electr. Eng., vol. 102, no. January, p. 108236, Sep. 2022, doi: 10.1016/j.compeleceng.2022.108236.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Komparatif Kinerja Algoritma Machine Learning untuk Deteksi Stunting


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.