Evaluasi Perbandingan Kinerja Convolutional Neural Networks untuk Klasifikasi Kualitas Biji Kakao
Abstract
Keywords
Full Text:
PDFReferences
E. G. Winarto, Rahmayati, and A. Lawi, “Implementasi Arsitektur Inception Resnet-V2 untuk Klasifikasi Kualitas Biji Kakao,†Konf. Nas. Ilmu Komput. 2021 , pp. 132–137, 2021.
S. V. M. Dan and K. N. Knn, “Perbandingan Kinerja Pengklasifikasi Citra Buah Kakao Sakit Dan Sehat Menggunakan Support Vector Machine (Svm) Dan K-Nearest Neighbors (Knn),†vol. 14, no. 1, pp. 1–8, 2023.
R. Febrian, B. M. Halim, M. Christina, D. Ramdhan, and A. Chowanda, “Facial expression recognition using bidirectional LSTM - CNN,†Procedia Comput. Sci., vol. 216, no. 2022, pp. 39–47, 2023, doi: 10.1016/j.procs.2022.12.109.
V. Choudhary, P. Guha, G. Pau, R. K. Dhanaraj, and S. Mishra, “Automatic Classification of Cowpea Leaves Using Deep Convolutional Neural Network,†Smart Agric. Technol., p. 100209, 2023, doi: 10.1016/j.atech.2023.100209.
S. Sowmya and D. Jose, “Contemplate on ECG signals and classification of arrhythmia signals using CNN-LSTM deep learning model,†Meas. Sensors, vol. 24, no. October, p. 100558, 2022, doi: 10.1016/j.measen.2022.100558.
S. Anwar and Ã. Rocha, “Special issue on towards advancements in machine learning for exploiting large-scale and heterogeneous repositories,†Neural Comput. Appl., vol. 5, pp. 7909–7911, 2023, doi: 10.1007/s00521-022-08182-5.
L. F. de J. Silva, O. A. C. Cortes, and J. O. B. Diniz, “A novel ensemble CNN model for COVID-19 classification in computerized tomography scans,†Results Control Optim., vol. 11, no. September 2022, p. 100215, 2023, doi: 10.1016/j.rico.2023.100215.
B. Eidel, “Deep CNNs as universal predictors of elasticity tensors in homogenization,†Comput. Methods Appl. Mech. Eng., vol. 403, p. 115741, 2023, doi: 10.1016/j.cma.2022.115741.
D. Ruan, J. Wang, J. Yan, and C. Gühmann, “CNN parameter design based on fault signal analysis and its application in bearing fault diagnosis,†Adv. Eng. Informatics, vol. 55, no. June 2022, p. 101877, 2023, doi: 10.1016/j.aei.2023.101877.
W. N. Ismail, H. A. Alsalamah, M. M. Hassan, and E. Mohamed, “AUTO-HAR: An adaptive human activity recognition framework using an automated CNN architecture design,†Heliyon, vol. 9, no. 2, p. e13636, 2023, doi: 10.1016/j.heliyon.2023.e13636.
A. Abbas, J. P. Vantassel, B. R. Cox, K. Kumar, and J. Crocker, “A frequency-velocity CNN for developing near-surface 2D vs images from linear-array, active-source wavefield measurements,†Comput. Geotech., vol. 156, no. February, p. 105305, 2023, doi: 10.1016/j.compgeo.2023.105305.
R. Li, R. Gao, and P. N. Suganthan, “A decomposition-based hybrid ensemble CNN framework for driver fatigue recognition,†Inf. Sci. (Ny)., vol. 624, pp. 833–848, 2023, doi: 10.1016/j.ins.2022.12.088.
N. N. Prakash, V. Rajesh, D. L. Namakhwa, S. Dwarkanath Pande, and S. H. Ahammad, “A DenseNet CNN-based liver lesion prediction and classification for future medical diagnosis,†Sci. African, vol. 20, p. e01629, 2023, doi: 10.1016/j.sciaf.2023.e01629.
Z. A. Sejuti and M. S. Islam, “A hybrid CNN–KNN approach for identification of COVID-19 with 5-fold cross validation,†Sensors Int., vol. 4, no. November 2022, p. 100229, 2023, doi: 10.1016/j.sintl.2023.100229.
Q. Hou, R. Xia, J. Zhang, Y. Feng, Z. Zhan, and X. Wang, “Learning visual overlapping image pairs for SfM via CNN fine-tuning with photogrammetric geometry information,†Int. J. Appl. Earth Obs. Geoinf., vol. 116, no. October 2022, p. 103162, 2023, doi: 10.1016/j.jag.2022.103162.
M. Chu, P. Wu, G. Li, W. Yang, J. L. Gutiérrez-Chico, and S. Tu, “Advances in Diagnosis, Therapy, and Prognosis of Coronary Artery Disease Powered by Deep Learning Algorithms,†JACC Asia, vol. 3, no. 1, pp. 1–14, 2023, doi: 10.1016/j.jacasi.2022.12.005.
K. Cheng, “Hierarchical attributes learning for pedestrian re-identification via parallel stochastic gradient descent combined with momentum correction and adaptive learning rate,†Neural Comput. Appl., vol. 2, 2019, doi: 10.1007/s00521-019-04485-2.
N. Youssouf, “Traffic sign classification using CNN and detection using faster-RCNN and YOLOV4,†Heliyon, vol. 8, no. 12, 2022, doi: 10.1016/j.heliyon.2022.e11792.
G. Rajeshkumar et al., “Smart office automation via faster R-CNN based face recognition and internet of things,†Meas. Sensors, vol. 27, no. November 2022, p. 100719, 2023, doi: 10.1016/j.measen.2023.100719.
J. D. Rosita P and W. S. Jacob, “Multi-Objective Genetic Algorithm and CNN-Based Deep Learning Architectural Scheme for effective spam detection,†Int. J. Intell. Networks, vol. 3, no. December 2021, pp. 9–15, 2022, doi: 10.1016/j.ijin.2022.01.001.
DOI: https://doi.org/10.30865/mib.v7i3.6533
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.