Perbandingan Algoritma K-Means Dan K-Medoids Untuk Pemetaan Hasil Produksi Buah-Buahan
DOI:
https://doi.org/10.30865/mib.v7i4.6477Keywords:
Data mining, Clustering, K-Means, K-Medoids, RapidminerAbstract
In general, in 2019-2020 fruit production in Kotawaringin Timur district has decreased. Based on the data on fruit production, the amount of fruit production decreased, resulting in scarce fruit stocks and expensive fruit prices. Based on these problems, fruit production will be grouped according to the type of production in East Kotawaringin district using data mining techniques with clustering techniques using the K-Means algorithm and K-Medoids algorithm in order to optimize and increase fruit production. The results of grouping fruit production will be divided into 3 clusters, namely the highest cluster, the medium cluster, and the lowest cluster, making it easier for the Food and Agriculture Security Service in East Kotawaringin district to calculate and increase agricultural yields, especially in the horticulture sector. Based on the test results using data in 2019-2022, totaling 29 data in the Rapidminer application version 9.9 by comparing the DBI (Davies Bouldin Index) values of the two algorithms with so that the conclusion in determining the best value for the number of clusters (K) is that the fourth experiment shows 0.296 DBI (Davies Bouldin Index) values with six clusters. If the DBI value is smaller or closer to 0, then the cluster results obtained are more optimal. The results obtained in the K-Means algorithm get a smaller DBI (Davies Bouldin Index) value with a value of 0.296 while the K-Medoids algorithm results with a DBI (Davies Bouldin Index) value of 0.507. The best algorithm for clustering fruit production in Kotawaringin Timur district is the K-Means algorithm based on the DBI values obtained.References
A. Hadiyatullah, D. Arifianto, H. Azizah, and A. Faruq, “KOMODITAS UNGGULAN DI KABUPATEN JEMBER MENGGUNAKAN,†pp. 1–9, 2018.
I. Audita and S. T. Bangsa, “PEMETAAN HASIL PRODUKSI BUAH-BUAHAN DENGAN TEKNIK DATA MINING K-MEDOIDS,†vol. 1, no. 3, 2022.
U. S. Utara, “Strategi Pengembangan Agribisnis Hortikultura di Wilayah Pedesaan TALENTA Conference Series Strategi Pengembangan Agribisnis Hortikultura di Wilayah Pedesaan,†vol. 1, no. 1, pp. 0–8, 2018.
. F., F. T. Kesuma, and S. P. Tamba, “Penerapan Data Mining Untuk Menentukan Penjualan Sparepart Toyota Dengan Metode K-Means Clustering,†J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 2, no. 2, pp. 67–72, 2020, doi: 10.34012/jusikom.v2i2.376.
N. E. Putria, “Data Mining Penjualan Tiket Pesawat Menggunakan Algoritma Apriori Pada Terminal Tiket Batam Tour & Travel,†Comput. Based Inf. Syst. J., vol. 6, no. 1, pp. 29–39, 2018, [Online]. Available: http://ejournal.upbatam.ac.id/index.php/cbis/article/download/643/410.
A. Almayda and S. Saepudin, “PENERAPAN DATA MINING K-MEANS CLUSTERING UNTUK,†pp. 241–249, 2021.
M. Mardalius, “Pemanfaatan Rapid Miner Studio 8.2 Untuk Pengelompokan Data Penjualan Aksesoris Menggunakan Algoritma K-Means,†Jurteksi, vol. 4, no. 2, pp. 123–132, 2018, doi: 10.33330/jurteksi.v4i2.36.
R. A. Farissa, R. Mayasari, and Y. Umaidah, “Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Data Obat dengan Silhouette Coefficient,†vol. 5, no. 2, pp. 109–116, 2021.
B. Produktivitas, “Perbandingan algoritma k-means dengan k-medoids pada pengelompokan armada kendaraan truk berdasarkan produktivitas,†vol. 06, pp. 229–240, 2021.
I. Kamila et al., “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,†vol. 5, no. 1, pp. 119–125, 2019.
P. Algoritma and K. D. A. N. K. Dalam, “Perbandingan algoritma k-means dan k-medoids dalam klasterisasi produk asuransi perusahaan nasional,†vol. XI, no. 2, pp. 208–214, 2019.
R. P. K. Covid-, B. Kota, and K. Di, “PERBANDINGAN ALGORITMA K-MEANS DAN K-MEDOIDS DALAM CLUSTERING,†vol. 9, no. 2, pp. 126–131, 2022, doi: 10.30656/jsii.v9i2.5127.
M. A. K. D. K-medoids, “Penerapan Data Mining Dalam Pemilihan Produk Unggulan dengan,†vol. 6, pp. 27–34, 2022, doi: 10.30865/mib.v6i1.3294.
F. Harahap, “Perbandingan Algoritma K Means dan K Medoids Untuk Clustering Kelas Siswa Tunagrahita,†vol. 2, no. 4, pp. 191–197, 2021.
F. C-means, “Perbandingan Clustering Karyawan Berdasarkan Nilai Kinerja Dengan Algoritma K-Means Dan Fuzzy C-Means,†vol. 8, no. 3, 2021.
M. H. Adiya and Y. Desnelita, “Jurnal Nasional Teknologi dan Sistem Informasi Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru,†vol. 01, pp. 17–24, 2019.
S. Regina, E. Sutinah, and N. Agustina, “Clustering Kualitas Kinerja Karyawan Pada Perusahaan Bahan Kimia Menggunakan Algoritma K-Means,†J. Media Inform. Budidarma, vol. 5, no. 2, p. 573, 2021, doi: 10.30865/mib.v5i2.2909.
Y. Wicaksono, “Segmentasi Pelanggan Bisnis Dengan Multi Kriteria Menggunakan K-Means,†Indones. J. Bus. Intell., vol. 1, no. 2, p. 45, 2019, doi: 10.21927/ijubi.v1i2.872.
S. Sindi, W. R. O. Ningse, I. A. Sihombing, F. I. R.H.Zer, and D. Hartama, “Analisis Algoritma K-Medoids Clustering Dalam Pengelompokan Penyebaran Covid-19 Di Indonesia,†J. Teknol. Inf., vol. 4, no. 1, pp. 166–173, 2020, doi: 10.36294/jurti.v4i1.1296.
F. Nasari, D. H. Tanjung, and F. Handayani, “Optimasi Metode K-Means dan K-Medoids Berdasarkan Jumlah Cluster dan Nilai DBI Dalam Pengelompokkan Produksi Kelapa Sawit Di Provinsi Riau,†vol. 7, no. 2, 2023.
I. Safira, R. Salkiawati, and W. Priatna, “Penerapan Algoritma K-Means untuk Mengetahui Pola Persediaan Barang pada Toko Raja Bekasi,†vol. 3, no. 1, pp. 99–110, 2022.
J. Sisfotenika, “Evaluasi Cluster Data Interkomparasi Anak Timbangan Dengan Algoritma Self Organizing Maps Cluster Evaluation Weighing Intercomparison Data with Self Organizing Maps Algorithm,†vol. 11, no. 2, pp. 208–219, 2021.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).