Metode Naive Bayes Classifier dan Forward Selection Untuk Deteksi Berita Hoaks Bahasa Indonesia

 (*)Danang Bagus Chandra Prasetiyo Mail (Universitas Dian Nuswantoro, Semarang, Indonesia)
 Pulung Nurtantio Andono (Universitas Dian Nuswantoro, Semarang, Indonesia)
 Catur Supriyanto (Universitas Dian Nuswantoro, Semarang, Indonesia)

(*) Corresponding Author

Submitted: June 26, 2023; Published: July 31, 2023


Presently, hoaxes or fake news have become a serious threat to human life. Hoax news can not only cause material harm and chaos in society, but now fake news can also affect a person's psychology by causing fear and terror, and at worst, it can break national sovereignty. To process the classification, data miming is used so that it can be seen whether a news item is hoax or genuine news. In this study, researchers used naïve Bayes as a classification method. Then the researcher also uses the forward selection function used in the Naïve-Bayes method. Forward selection is the best regression model formation method based on an approach by selecting variables by including the independent variables that have the largest correlation values. While the naïve Bayes algorithm works conditionally independent between predictions. Based on the tests that have been carried out on the classification of Indonesian hoaxes using Naïve Bayes and Forward Selection to obtain an accuracy of 84%, and a recall of 63.72% while the precision increases to 91.19% with an increase in accuracy of 8.8% and a recall of 8.19% and precision increased by 20.98%. It is hoped that the level of accuracy in the classification of Indonesian hoax news using the naïve Bayes method using forward selection can be increased.


Classification; Forward Selection; Hoax News; Naïve Bayes

Full Text:


Article Metrics

Abstract view : 411 times
PDF - 169 times


X. Zhang and A. A. Ghorbani, “An overview of online fake news: Characterization, detection, and discussion,” Inf. Process. Manag., vol. 57, no. 2, p. 102025, 2020, doi: 10.1016/j.ipm.2019.03.004.

C. S. Atodiresei, A. Tǎnǎselea, and A. Iftene, “Identifying Fake News and Fake Users on Twitter,” in Procedia Computer Science, Elsevier B.V., 2018, pp. 451–461. doi: 10.1016/j.procS.2018.07.279.

N. Utami and R. Riyantini, “Kampanye Anti-Hoax Dan Sikap Bela Negara Anti Hoax Campaign and State Defense,” Jurnal.Idu.Ac.Id, pp. 1–15, 2018, [Online]. Available:

J. Kolluri and S. Razia, “Text classification using Naïve Bayes classifier,” Mater. Today Proc., p. S2214785320376252, 2020, doi: 10.1016/j.matpr.2020.10.058.

D. Gunawan, R. Mahardika, F. Ranja, S. Purnamawati, and I. Jaya, “The identification of pornographic sentences in Bahasa Indonesia,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 601–606. doi: 10.1016/j.procs.2019.11.162.

G. F. Roberto, M. Z. Nascimento, A. S. Martins, T. A. A. Tosta, P. R. Faria, and L. A. Neves, “Classification of breast and colorectal tumors based on percolation of color normalized images,” Comput. Graph., vol. 84, pp. 134–143, Nov. 2019, doi: 10.1016/j.cag.2019.08.008.

G. Kou, P. Yang, Y. Peng, F. Xiao, Y. Chen, and F. E. Alsaadi, “Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision-making methods,” Appl. Soft Comput. J., vol. 86, p. 105836, 2020, doi: 10.1016/j.asoc.2019.105836.

V. A. Fitri, R. Andreswari, and M. A. Hasibuan, “Sentiment analysis of social media Twitter with case of Anti-LGBT campaign in Indonesia using Naïve Bayes, decision tree, and random forest algorithm,” Procedia Comput. Sci., vol. 161, pp. 765–772, 2019, doi: 10.1016/j.procs.2019.11.181.

I. Y. R. Pratiwi, R. A. Asmara, and F. Rahutomo, “Study of hoax news detection using naïve bayes classifier in Indonesian language,” in Proceedings of the 11th International Conference on Information and Communication Technology and System, ICTS 2017, Institute of Electrical and Electronics Engineers Inc., Jan. 2018, pp. 73–78. doi: 10.1109/ICTS.2017.8265649.

S. Chen, G. I. Webb, L. Liu, and X. Ma, “A novel selective naïve Bayes algorithm,” Knowledge-Based Syst., vol. 192, p. 105361, 2020, doi: 10.1016/j.knosys.2019.105361.

M. Artur, “Review the performance of the Bernoulli Naïve Bayes Classifier in Intrusion Detection Systems using Recursive Feature Elimination with Cross-validated selection of the best number of features,” Procedia Comput. Sci., vol. 190, no. 2019, pp. 564–570, 2021, doi: 10.1016/j.procs.2021.06.066.

K. Mehmood, D. Essam, K. Shafi, and M. K. Malik, “An unsupervised lexical normalization for Roman Hindi and Urdu sentiment analysis,” Inf. Process. Manag., vol. 57, no. 6, p. 102368, 2020, doi: 10.1016/j.ipm.2020.102368.

M. S. N. Van Delsen, H. W. M. Patty, and N. L. Lalurmele, “Model Regresi Linier Dengan Metode Backward Dan Forward ( Studi Kasus : Pendapatan Pajak Daerah Kota Ambon 2007-2016 ),” Variance, vol. 1, pp. 1–10, 2019.

C. Yang, X. Zhu, J. Qiao, and K. Nie, “Forward and backward input variable selection for polynomial echo state networks,” Neurocomputing, vol. 398, pp. 83–94, 2020, doi: 10.1016/j.neucom.2020.02.034.

F. Macedo, M. Rosário Oliveira, A. Pacheco, and R. Valadas, “Theoretical foundations of forward feature selection methods based on mutual information,” Neurocomputing, vol. 325, pp. 67–89, 2019, doi: 10.1016/j.neucom.2018.09.077.

M. M. Saritas, “Performance Analysis of ANN and Naive Bayes Classification Algorithm for Data Classification,” Int. J. Intell. Syst. Appl. Eng., vol. 7, no. 2, pp. 88–91, 2019, doi: 10.18201/ijisae.2019252786.

A. Tommasel and D. Godoy, “A Social-aware online short-text feature selection technique for social media,” Inf. Fusion, vol. 40, pp. 1–17, 2018, doi: 10.1016/j.inffus.2017.05.003.

D. Wu, X. Ma, and D. L. Olson, “Financial distress prediction using integrated Z-score and multilayer perceptron neural networks,” Decis. Support Syst., vol. 159, no. May, p. 113814, 2022, doi: 10.1016/j.dss.2022.113814.

M. N. Alenezi and F. S. Al-Anzi, “A Study of Z-Transform Based Encryption Algorithm,” Int. J. Commun. Networks Inf. Secur., vol. 13, no. 2, pp. 302–309, 2021, doi: 10.54039/ijcnis.v13i2.5052.

L. Zhu, M. Li, and N. Metawa, “Financial Risk Evaluation Z-Score Model for Intelligent IoT-based Enterprises,” Inf. Process. Manag., vol. 58, no. 6, p. 102692, 2021, doi: 10.1016/j.ipm.2021.102692.

S. Urolagin, N. Sharma, and T. K. Datta, “A combined architecture of multivariate LSTM with Mahalanobis and Z-Score transformations for oil price forecasting,” Energy, vol. 231, p. 120963, 2021, doi: 10.1016/

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Metode Naive Bayes Classifier dan Forward Selection Untuk Deteksi Berita Hoaks Bahasa Indonesia


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.