Klasifikasi Jenis Mangga Menggunakan Algoritma Convolutional Neural Network

 (*)Risma Yati Mail (Universitas Buana Perjuangan Karawang, Karawang, Indonesia)
 Tatang Rohana (Universitas Buana Perjuangan Karawang, Karawang, Indonesia)
 Adi Rizky Pratama (Universitas Buana Perjuangan Karawang, Karawang, Indonesia)

(*) Corresponding Author

Submitted: June 24, 2023; Published: July 23, 2023

Abstract

The name of the mango is Mangnifera IndicaL. It originated in India and spread to Indonesia. There are various types of mango variations with different shapes and colors according to the type. To distinguish each mango is seen by its shape and color. However, if in the harvest process mango farmers have to choose manually it takes a long time and potentially mistaken in determining the type. So it needs technology that can make it easier to differentiate the type of mango based on its shape. The study aims to create models with the best accuracy on the process of classifying 5 types of mango based on its shape. The data used in the research this time there are 5 types of mango that will be classified, namely Mangga Apel, Arumanis mango, Mangga Gedong Gincu, Golek mango and Mangga Manalagi. Used 375 images of mango as data sets. The data set before entering the previous training process is undergoing a pre-processing phase that includes the augmentation and resize process. The number of images increased to 2250. The data set is divided into three parts: 70% training data, 20% validation data, and 10% test data. Next is the process of segmentation, the segmentation used in this research is otsu segmentation. The classification process uses the Convolutional Neural Network (CNN) architecture with 3 layers of convolution 16,32 and 64, also using the Adam optimizer. 4 experimental scenarios were performed to find the best accuracy value by distinguishing between learning rate and batch size. From the confusion matrix test results, the best accuracy values were obtained from the input hyperparameter size100x100, epoch 100, learning rate 0,001 and batch size 15 with accurate values of 99.56%, precision 100%, recall 100%, and f1-score 100%.

Keywords


Classification; Type of Mangas; Forms; Convolutional Neural Network; Confusion Matrix

Full Text:

PDF


Article Metrics

Abstract view : 673 times
PDF - 618 times

References

H. Edha et al., “PENERAPAN METODE TRANSFORMASI RUANG WARNA HUE SATURATION INTENSITY (HSI) UNTUK MENDETEKSI KEMATANGAN BUAH MANGGA HARUM MANIS,” 2020.

C. Bagus Sanjaya and dan Muhammad Imron Rosadi, “KLASIFIKASI BUAH MANGGA BERDASARKAN TINGKAT KEMATANGAN MENGGUNAKAN LEAST-SQUARES SUPPORT VECTOR MACHINE,” 2018.

A. Arip Munawar and D. Suhandy, “Prediction of Vitamin C, Titratable Acidity, and Soluble Solids Content of Mango Fruits Using Near-Infrared Reflectance Spectroscopy,” 2020.

D. Hidayat, “KLASIFIKASI JENIS MANGGA BERDASARKAN BENTUK DAN TEKSTUR DAUN MENGGUNAKAN METODE CONVOLUTIO NALNEURAL NETWORK(CNN) CLASSIFICATION OF TYPES OF MANGO BASED ON LEAVE SHAPE AND TEXTURE USING CONVOLUTIO NALNEURAL NETWORK(CNN) METHOD,” Journal of Information Technology and Computer Science (INTECOMS), vol. 5, no. 1, 2022.

Z. E. Fitri, R. Aprilia, A. Madjid, and A. M. N. Imron, “Ensiklopedia Digital Berdasarkan Klasifikasi Varietas Buah Mangga (Mangifera spp.) Menggunakan Algoritma Backpropagation,” Komputika : Jurnal Sistem Komputer, vol. 11, no. 2, pp. 113–120, Feb. 2022, doi: 10.34010/komputika.v11i2.5513.

A. Arkadia et al., Klasifikasi Buah Mangga Badami Untuk Menentukan Tingkat Kematangan dengan Metode CNN. 2021.

F. Sudana Putra, D. Otomatis Jerawat Wajah, and M. P. Kurniawan, “Deteksi Otomatis Jerawat Wajah Menggunakan Metode Convolutional Neural Network (CNN),” JIFOTECH (JOURNAL OF INFORMATION TECHNOLOGY, vol. 1, no. 2, 2021.

O. Nurdiawan, R. Herdiana, I. Ali, and M. Fijriani, “Kinerja Algoritma Convolutional Neural Network dalam Klasifikasi Covid-19 Varian Omicron Berdasarkan Citra Ct-Scan Thoax,” Jurnal Riset Komputer), vol. 9, no. 5, pp. 2407–389, 2022, doi: 10.30865/jurikom.v9i5.4884.

M. A. Hanin, R. Patmasari, R. Yunendah, and N. Fu’adah, “SISTEM KLASIFIKASI PENYAKIT KULIT MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK (CNN) SKIN DISEASE CLASSIFICATION SYSTEM USING CONVOLUTIONAL NEURAL NETWORK (CNN),” Feb. 2021.

N. Rochmawati et al., “Analisa Learning rate dan Batch size Pada Klasifikasi Covid Menggunakan Deep learning dengan Optimizer Adam,” 2021.

D. Luthfy, C. Setianingsih, and M. W. Paryasto, “Indonesian Sign Language Classification Using You Only Look Once,” Feb. 2023.

A. Aziz, R. Reyhan Zhafari, and M. M. Santoni, Klasifikasi 10 Spesies Monyet Berdasarkan Citra Menggunakan Convolutional Neural Network. 2021.

C. Uswatun Khasanah, A. Kusuma Pertiwi, F. Witamajaya, P. Akbara Surakarta, and J. Sumbing Raya, “Implementasi Data Augmentation Random Erasing dan GridMask pada CNN untuk Klasifikasi Batik Implementation of Random Erasing and GridMask Data Augmentations on CNN for Batik Classification,” vol. 13, no. 1, 2023, doi: 10.30700/jst.v13i1.1274.

I. Wulandari, H. Yasin, and T. Widiharih, “KLASIFIKASI CITRA DIGITAL BUMBU DAN REMPAH DENGAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK (CNN),” Jurnal Gaussian, vol. 9, no. 3, pp. 273–282, 2020, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/

S. Sunardi, A. Yudhana, and S. A. Wijaya, “Penerapan Metode Median Filtering untuk Optimasi Deteksi Wajah pada Foto Digital,” Journal of Innovation Information Technology and Application (JINITA), vol. 4, no. 1, pp. 51–60, Jun. 2022, doi: 10.35970/jinita.v4i1.1214.

M. Mellyadi and P. Harliana, “Segmentasi Citra Satelit dalam Observasi dan Konservasi Hutan Lindung Taman Nasional Gunung Lauser Menggunakan Algoritma Fuzzy C-Means,” Hello World Jurnal Ilmu Komputer, vol. 1, no. 2, pp. 90–96, Jul. 2022, doi: 10.56211/helloworld.v1i2.44.

A. Susanto and A. Kesehatan, “KOMBINASI SOBEL, CANNY DAN OTSU UNTUK SEGMENTASI CITRA PENGGUNA HELEM SAFETY DAN TANPA HELEM SAFETY,” 2022.

A. Rizky Pratama, A. Ratna Juwita, and T. Al Mudzakir, “Klasifikasi Daging Sapi Berdasarkan Ciri Warna Dengan Metode Otsu dan K-Nearest Neighbor,” Apr. 2021.

S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” vol. 3, no.2, pp. 49–56, 2018.

Rifkie Primartha and Romi Satria Wahono, Algoritma Machine Learning. Bandung: INFORMATIKA, 2021.

Ilyas and Risnawati, PENGENALAN TANAMAN CABAI DENGAN TEKNIK KLASIFIKASI MENGGUNAKAN METODE CNN. 2020.

P. Adi Nugroho, I. Fenriana, and R. Arijanto, “IMPLEMENTASI DEEP LEARNING MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK ( CNN ) PADA EKSPRESI MANUSIA,” JURNAL ALGOR, vol. 2, no. 1, 2020, [Online]. Available: https://jurnal.buddhidharma.ac.id/index.php/algor/index

A. Ratna Juwita et al., “IDENTIFIKASI CITRA BATIK DENGAN METODE CONVOLUTIONAL NEURAL NETWORK,” 2021, vol. 6, no. 1, pp. 192–208.

E. Oktafanda, “Klasifikasi Citra Kualitas Bibit dalam Meningkatkan Produksi Kelapa Sawit Menggunakan Metode Convolutional Neural Network (CNN),” Jurnal Informatika Ekonomi Bisnis, pp. 72–77, Aug. 2022, doi: 10.37034/infeb.v4i3.143.

I. Nawangsih, I. Melani, S. Fauziah, and A. I. Artikel, “PELITA TEKNOLOGI PREDIKSI PENGANGKATAN KARYAWAN DENGAN METODE ALGORITMA C5.0 (STUDI KASUS PT. MATARAM CAKRA BUANA AGUNG,” Jurnal Pelita Teknologi, vol. 16, no. 2, pp. 24–33, 2021.

U. Muhammadiyah Jember, M. Ainur Rohman, and D. Arifianto, “Penerapan Metode Euclidean Probality dan Confusion Matrix dalam Diagnosa Penyakit Koi Application of the Euclidean Probability and Confusion Matrix Methods in the Diagnosis of Koi Disease,” 2021. [Online]. Available: http://jurnal.unmuhjember.ac.id/index.php/JST

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Jenis Mangga Menggunakan Algoritma Convolutional Neural Network

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.