Penerapan Data Mining Dengan Metode K-Nearest Neighbor Terhadap Klasifikasi Sarang Walet
Abstract
Sungai Benuh Village is one of the areas where many swallow houses are made because it is able to produce a large number of swallow nests so that the purpose of this study was to make a classification by applying data mining to see the quality level of swallow nests, so that later it will become a reference in helping buyers and the seller obtains appropriate results and maintains the selling power of the swallow's nest. This is also based on a problem that is often encountered, namely sellers and buyers do not have a fixed standard of evaluation when a transaction takes place, so that unilateral judgments appear. In addition, there are differences in quality and quantity in different seasons. During the rainy season, swallow nests are larger, white, clean and numerous, while during the dry season, the opposite results are obtained. Classification results using the k-nearest neighbor method with Weka software show 90% accuracy for 45 out of 50 data samples, including comparative data samples or new data samples using a value of k = 7 with categorized attributes of cleanliness, color, size, shape and harvest time “Good” or “Bad”. Evaluation of the results with the confusion matrix results obtained accuracy of 80%, precision 80.49, recall 94.29% and F1 score 86.84%. So, this research was successfully carried out with high classification results so that it can be a reference to help buyers and sellers obtain a mutual agreement during transactions and maintain the selling power of the swallow's nest.
Keywords
Full Text:
PDFArticle Metrics
Abstract view : 604 timesPDF - 357 times
References
A. P. P. Wicaksono, N. K. Kusmayati, dan T. Kurniawan, “Pengaruh Usaha Sarang Burung Walet Terhadap Pendapatan Masyarakat Di Kota Surabaya,” Jurnal Riset Bisnis dan Ekonomi, vol. 4, no. 1, 2023.
F. E. Y. Kha, T. Uda, S. Rohaetin, R. Alexandro, dan D. Erang, “Manfaat Sosial Ekonomi Budidaya Sarang Burung Walet Bagi Masyarakat,” Jurnal Ilmu Ekonomi & Sosial, vol. 12, no. 2, 2021.
Husdi dan M. G. Sayoga, “PROTOTYPE ALAT PEMANTAUAN DAN PENGENDALIAN SUHU RUANGAN SARANG WALET BERBASIS NODEMCU,” Jurnal Sistem Informasi Dan Teknik Komputer, vol. 8, no. 1, 2023.
R. Rakhmadi, A. Hadiawan, D. Muhammad, dan S. Zahratun, “Potensi Ekspor Sarang Burung Walet Provinsi Lampung,” Jurnal Hubungan Internasional Indonesia, vol. 4, no. 1, 2022, [Daring]. Tersedia pada: http://jhii.fisip.unila.ac.id/ojs/index.php/jhii
D. Damayanti, “Implementasi Algoritma C4.5 Prediksi Produksi Komoditas Tanaman Perkebunan Berdasarkan Luas Lahan,” Jurnal Terapan Informatika Nusantara, vol. 2, no. 10, hlm. 571–579, Mar 2022, doi: 10.47065/tin.v2i10.1026.
A. Lili, Suhada, dan S. Widodo, “Pengelompokan Hasil Panen Kelapa Sawit Dalam Produksi Per Blok Menggunakan Algoritma K-Means,” Journal of Machine Learning and Data Analytics (MALDA), vol. 01, no. 01, 2022.
E. P. W. Mandala dan D. E. Putri, Data Mining Asosiasi dan Klasterisasi Produk pada Toko Retail. Solok: Penerbit Insan Cendekia Mandiri, 2022.
F. Maulana, M. Orisa, dan H. Z. Zahro, “KLASIFIKASI DATA PRODUK MEBEL ANEKA JAYA MENGGUNAKAN METODE K-NEAREST NEIGHBOR BERBASIS WEB,” Jurnal Mahasiswa Teknik Informatika, vol. 5, no. 2, 2021.
M. Wibowo dan R. Ramadhani, “Perbandingan Metode Klasifikasi Data Mining Untuk Rekomendasi Tanaman Pangan,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 3, hlm. 913, Jul 2021, doi: 10.30865/mib.v5i3.3086.
B. Basuki, A. Nazir, S. K. Gusti, L. Handayani, dan I. Iskandar, “Klasifikasi Tingkat Keberhasilan Produksi Ayam Broiler di Riau Menggunakan Algoritma K-Nearest Neighbor,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 3, hlm. 493, Mar 2023, doi: 10.30865/json.v4i3.5665.
A. D. W. Sumari, P. I. Mawarni, dan A. R. Syulistyo, “Klasifikasi Mutu Telur Burung Puyuh Berdasarkan Warna dan Tekstur Menggunakan Metode K-Nearest Neighbor (KNN) dan Fusi Informasi,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 5, hlm. 1019, Okt 2021, doi: 10.25126/jtiik.2021854393.
E. P. W. Mandala, D. E. Putri, dan R. Permana, “Penerapan Data Mining untuk Klasifikasi Hasil Panen Jamur Tiram Menggunakan Algoritma K-Nearest Neighbors,” Jurnal Media Informatika Budidarma, vol. 7, no. 1, 2023, doi: 10.30865/mib.v7i1.5252.
M. Jumarlis, Mirfan, dan A. R. Manga, “Classification of Coffee Bean Defects Using Gray-Level Co-Occurrence Matrix and K-Nearest Neighbor,” ILKOM Jurnal Ilmiah, vol. 14, no. 1, hlm. 1–9, Apr 2022, doi: 10.33096/ilkom.v14i1.910.1-9.
D. N. Aini, B. Oktavianti, M. J. Husain, D. A. Sabillah, S. T. Rizaldi, dan Mustakim, “Seleksi Fitur untuk Prediksi Hasil Produksi Agrikultur pada Algoritma K-Nearest Neighbor (KNN),” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 1, hlm. 140, Sep 2022, doi: 10.30865/json.v4i1.4813.
S. P. Nabila, N. Ulinnuha, dan A. Yusuf, “MODEL PREDIKSI KELULUSAN TEPAT WAKTU DENGAN METODE FUZZY C-MEANS DAN K-NEAREST NEIGHBORS MENGGUNAKAN DATA REGISTRASI MAHASISWA,” Jurnal Ilmiah NERO, vol. 6, no. 1, 2021.
A. Bode, Z. Y. Lamasigi, dan I. C. R. Drajana, “The K-Nearest Neighboralgorithm usingForward Selection and Backward Elimination in predicting the Student’s Satisfaction Level of University Ichsan GorontalotowardOnline Lectures during the COVID-19 Pandemic,” ILKOM Jurnal Ilmiah, vol. 15, no. 1, 2023.
U. Erdiansyah, A. I. Lubis, dan K. Erwansyah, “Komparasi Metode K-Nearest Neighbor dan Random Forest Dalam Prediksi Akurasi Klasifikasi Pengobatan Penyakit Kutil,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, hlm. 208, Jan 2022, doi: 10.30865/mib.v6i1.3373.
P. R. Prayogo dan P. H. Susilo, “Sistem Pendukung Keputusan dalam Menentukan Kualitas Sarang Burung Walet Terbaik Menggunakan Metode Simple Additive Weighting (SAW),” Insearch (Information System Research) Journal , vol. 2, no. 2, 2022.
R. N. Sucihati, Usman, dan R. D. Kantari, “ANALISIS PENDAPATAN DAN KELAYAKAN BUDIDAYA SARANG BURUNG WALET DI KECAMATAN LUNYUK,” Jurnal Ekonomi dan Bisnis, vol. 8, no. 2, 2020.
I. A. Fausy, E. Meiyani, dan S. Amin, “Tingkat Kesejahteraan Masyarakat Dan Usaha Sarang Burung Walet Di Desa Belopa Kabupaten Luwu,” Journal Socius Education (JSE), vol. 1, no. 1, 2023, doi: 10.0505/jse.v%vi%i.416.
T. Arifin dan D. Ariesta, “PREDIKSI PENYAKIT GINJAL KRONIS MENGGUNAKAN ALGORITMA NAIVE BAYES CLASSIFIER BERBASIS PARTICLE SWARM OPTIMIZATION,” Jurnal Tekno Insentif, vol. 13, no. 1, hlm. 26–30, Apr 2019, doi: 10.36787/jti.v13i1.97.
D. Normawati dan S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” Jurnal Sains Komputer & Informatika (J-SAKTI), vol. 5, no. 2, hlm. 697–711, 2021.
D. Putra dan A. Wibowo, “Prediksi Keputusan Minat Penjurusan Siswa SMA Yadika 5 Menggunakan Algoritma Naïve Bayes,” dalam Prosiding Seminar Nasional Riset Dan Information Science (SENARIS), 2020, hlm. 84–92.
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA
This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com
This work is licensed under a Creative Commons Attribution 4.0 International License.