A Comparison of C4.5 and K-Nearest Neighbor Algorithm on Classification of Disk Hernia and Spondylolisthesis in Vertebral Column
Abstract
Good spinal health is needed to carry out daily activities. Trauma to the vertebral column can affect the spinal cord's ability to send and receive messages from the brain to the body's sensory and motor control systems. Disk hernia and spondylolisthesis are examples of pathology of the vertebral column. Research on pathology or damage to bones and joints of the skeletal system is rare. Whereas the classification system can be used by radiologists as a "second opinion" so that it can improve productivity and diagnosis consistency from that radiologist. This study compared the accuracy values of the C4.5 and K-NN algorithms in the classification of herniated disc disease and spondylolisthesis as well as a comparison of the speed of time in the classification process. Tests were carried out using data from 310 patients with normal conditions (100 patients), herniated disks (60 patients), and spondylolisthesis (150 patients). The results showed that the accuracy of the C4.5 classifier was 89% and the K-NN classifier was 83%. The average time needed to classify the C4.5 classifier is 0.00912297 seconds and the K-NN classifier is 0.000212303 seconds.
Keywords
Full Text:
PDFReferences
C. Desai, V. Reddy, and A. Amit, “Anatomy, Back, Vertebral Column,†Treasure Island (FL): StatPearls, PMID: 30247844, 2022.
R. Article, L. Pedro Bianchi, C. Kelly Bittar, R. Cardoso Silva, O. Silvestre, and A. Cliquet Jr, “Effects of Neuromuscular Electrical Stimulation on the Feet and Ankles of the Spinal Cord Injured,†Int J Phys Med Rehabil, vol. 10, no. 5, pp. 1–7, 2022, doi: 10.35248/2329-9096-22.10.638.
O. K. Oyedotun, E. O. Olaniyi, and A. Khashman, “Disk hernia and spondylolisthesis diagnosis using biomechanical features and neural network,†Technology and Health Care, vol. 24, no. 2, pp. 267–279, Mar. 2016, doi: 10.3233/THC-151126.
H. Fatmawati, A. Candra, N. S. Rumastika, A. Munawir, M. Hasan, and I. N. Semita, “Correlation between Vertebral Slippage in Spondylolisthesis with Ligamentum Flavum Thickening in Dr. Soebandi Hospital, Jember, East Java, Indonesia,†Althea Medical Journal, vol. 10, no. 1, pp. 56–60, Mar. 2023, doi: 10.15850/amj.v10n1.2794.
A. A. Reshi, I. Ashraf, F. Rustam, H. F. Shahzad, A. Mehmood, and G. S. Choi, “Diagnosis of vertebral column pathologies using concatenated resampling with machine learning algorithms,†PeerJ Comput Sci, vol. 7, pp. 1–34, 2021, doi: 10.7717/PEERJ-CS.547.
A. Anshu, “Review Paper on Data Mining TechniquesandApplications,†International Journal of Innovative Research in Computer Science & Technology, vol. 7, no. 2, pp. 22–26, Mar. 2019, doi: 10.21276/ijircst.2019.7.2.4.
A. Setianingrum, A. Hindayanti, D. M. Cahya, D. Silvi, P. S. Kom, and M. Kom, “PERBANDINGAN METODE ALGORITMA K-NN & METODE ALGORITMA C4.5 PADA ANALISA KREDIT MACET (STUDI KASUS PT TUNGMUNG TEXTILE BINTAN),†Jurnal Sains dan Manajemen, vol. 9, no. 2, pp. 78–92, 2021.
I. Handayani and Ikrimach, “COMPARISON OF K-NEAREST NEIGHBOR AND NAÃVE BAYES FOR BREAST CANCER CLASSIFICATION USING PYTHON,†IJISCS (International Journal of Information System and Computer Science), vol. 5, no. 1, pp. 1-10, 2020.
A. Irma Sukmawati and I. Handayani, “Function Consuming sebagai Tingkat Kecakapan Literasi Media Digital Masyarakat Yogyakarta,†Jurnal Komunikasi, vol. 16, no. 2, pp. 187–204, Apr. 2022, doi: 10.20885/komunikasi.vol16.iss2.art6.
I. Handayani and Ikrimach, “Accuracy Analysis of K-Nearest Neighbor and Naïve Bayes Algorithm in the Diagnosis of Breast Cancer,†JURNAL INFOTEL, vol. 12, no. 4, pp. 151–159, Nov. 2020, doi: 10.20895/infotel.v12i4.547.
N. H. Purnomo, B. Pamungkas, and C. Juliane, “JURNAL MEDIA INFORMATIKA BUDIDARMA Penerapan Algoritma C4.5 Untuk Klasifikasi Tren Pelanggaran Kendaraan Angkutan Barang dengan Metode CRISP-DM,†Jurnal Media Informatika Budidarma, vol. 7, no. 1, pp. 30–40, 2023, doi: 10.30865/mib.v7i1.5247.
Q. N. Azizah, “Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network AlexNet,†sudo Jurnal Teknik Informatika, vol. 2, no. 1, pp. 28–33, Feb. 2023, doi: 10.56211/sudo.v2i1.227.
S. Hidayah Nova, B. Warsito, and A. Puji Widodo, “The Combination of C4.5 with Particle Swarm Optimization in Classification of Class for Mental Retardation Students,†Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 1, pp. 107–118, 2023, doi: 10.26555/jiteki.v8i2.xxxx.
M. Iskandar, A. Rochman, D. E. Ratnawati, and S. Anam, “Penerapan Algoritme C4.5 untuk Klasifikasi Fungsi Senyawa Aktif Menggunakan Kode Simplified Molecular Input Line System (SMILES),†Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no.1, pp. 761-769, 2019.
A. Yulia Muniar, Panuar, and K. Ria Lestari, “Penerapan Algoritma K-Nearest Neighbor pada Pengklasifikasian Dokumen Berita Online,†Jurnal Teknologi Informasi dan Komunikasi, vol. 10, no. 2, pp. 137-144, Dec. 2020.
F. Ramadhan Akbar, S. Achmadi, and A. Mahmudi, “IMPLEMENTASI ANALISIS DATA KREDIT NASABAH MENGGUNAKAN METODE K-NEAREST NEIGHBORS,†JATI(Jurnal Mahasiswa Teknik Informatika), vol. 4, no. 1, pp. 1-10, 2020.
Tursina, H. Muhardi, and D. Aulia Sari, “Diagnosis Tahapan Pengguna Narkoba Menggunakan Metode K-Nearest Neighbor,†JEPIN, vol. 6, no. 1, pp. 101–108, 2020.
I. H. Herman, D. Widiyanto, and I. Ernawati,†PENGGUNAAN K-NEAREST NEIGHBOR (KNN) UNTUK MENGIDENTIFIKASI CITRA BATIK PEWARNA ALAMI DAN PEWARNA SINTETIS BERDASARKAN WARNA,†SENAMIKA, vol. 1, no.2, pp. 504-515, 2020.
H. Cahyaningrum, D. Arifianto, and G. Abdurrahman, “A Comparative Analysis of K Nearest Neighbor and Gaussian Naive Bayes methods in students major classification (A Case Study Of SMA Muhammadiyah 3 Jember),†Jurnal Smart Teknologi, vol. 1, no. 1, pp. 1-6, Mar. 2021.
E. E. Barito, J. Tji Beng, and D. Arisandi, “Penerapan Algoritma C4.5 untuk Klasifikasi Mahasiswa Penerima Bantuan Sosial Covid-19,†Jurnal Ilmu Komputer dan Sistem Informasi, vol. 10, no. 1, pp. 1-9, 2022.
S. H. Zulaikhah, A. Aziz, and W. Harianto, “OPTIMASI ALGORITMA K-NEAREST NEIGHBOR (KNN) DENGAN NORMALISASI DAN SELEKSI FITUR UNTUK KLASIFIKASI PENYAKIT LIVER,†JATI(Jurnal Mahasiswa Teknik Informatika), vol. 6, no. 2, pp. 439-445, 2022.
DOI: https://doi.org/10.30865/mib.v7i3.6394
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.