Sentiment Classification of Fuel Price Increase With Gated Recurrent Unit (GRU) and FastText

Aditya Andar Rahim, Yuliant Sibaroni, Sri Suryani Prasetiyowati

Abstract


The government usually implements a policy of increasing fuel prices and reducing subsidized fuel every year. Rising fuel prices have had a mixed impact on society. The rapid development of information technology has led to easy access and an increase in the number of internet users. Social media platforms, such as Twitter, are widely used by people to express themselves in everyday life. Through this social media, the public can submit reviews regarding public policies implemented by the government regarding fuel prices. The reviews submitted varied, ranging from positive, neutral to negative. Sentiment analysis can analyze the types of reviews submitted by people, including positive, negative, or neutral. This research uses Gated Recurrent Unit and FastText feature expansion to classify sentiments related to rising fuel prices on Twitter. This system was developed through several stages, namely data crawling, data labeling, data initial processing, feature expansion, classification, and evaluation. This study aims to determine the classification performance using Gated Recurrent Unit and FastText. The data used was 8,635, and the highest accuracy reached 90.15% with an F1 score of 90.06%. The research results may help the government in determining how individuals feel about fuel price increases. By understanding public sentiment, the government can reevaluate its policies or even establish new ones that serve the public interest.


Keywords


Sentiment Classification; Fuel Price; Twitter; GRU; FastText; SMOTE

Full Text:

PDF

References


F. Sandi, “Salah Satu Keputusan Berat Jokowi di 2022, Naikkan Harga BBM,†Jan. 01, 2023. https://www.cnbcindonesia.com/news/20230101095550-4-401827/salah-satu-keputusan-berat-jokowi-di-2022-naikkan-harga-bbm (accessed Jun. 15, 2023).

A. Agus Hidayat, L. Rahmawati, and A. M. Arlina, “Analisis Permintaan Transportasi Umum Modern Saat Kenaikan Harga Bbm Perspektif Permintaan Islam,†Al Iqtishod: Jurnal Pemikiran dan Penelitian Ekonomi Islam, vol. 5, no. 1, pp. 51–65, Jun. 2023, doi: 10.51339/iqtis.v5i1.930.

Asosiasi Penyelenggara Jasa Internet Indonesia/APJII., “Indonesian Internet Profile 2022,†Jun. 2022.

K. H. Manguri, R. N. Ramadhan, and P. R. Mohammed Amin, “Twitter Sentiment Analysis on Worldwide COVID-19 Outbreaks,†Kurdistan Journal of Applied Research, vol. 5, no. 3, pp. 54–65, May 2020, doi: 10.24017/covid.8.

K. K. Kapoor, K. Tamilmani, and N. P. Rana, “Advances in Social Media Research: Past, Present and Future,†Information Systems Frontiers, vol. 20, pp. 531–558, Jun. 2018, doi: 10.1007/s10796-017-9810-y.

H. Rosenberg, S. Syed, and S. Rezaie, “The Twitter pandemic: The critical role of Twitter in the dissemination of medical information and misinformation during the COVID-19 pandemic,†Canadian Journal of Emergency Medicine, vol. 22, no. 4. Cambridge University Press, pp. 418–421, Jul. 01, 2020. doi: 10.1017/cem.2020.361.

L. Nemes and A. Kiss, “Social media sentiment analysis based on COVID-19,†Journal of Information and Telecommunication, vol. 5, pp. 1–15, 2020, doi: 10.1080/24751839.2020.1790793.

C. A. Melton, O. A. Olusanya, N. Ammar, and A. Shaban-Nejad, “Public sentiment analysis and topic modeling regarding COVID-19 vaccines on the Reddit social media platform: A call to action for strengthening vaccine confidence,†J Infect Public Health, vol. 14, no. 10, pp. 1505–1512, Oct. 2021, doi: 10.1016/j.jiph.2021.08.010.

L. Yue, W. Chen, X. Li, W. Zuo, and M. Yin, “A survey of sentiment analysis in social media,†Knowl Inf Syst, vol. 60, no. 2, pp. 617–663, Aug. 2019, doi: 10.1007/s10115-018-1236-4.

E. A. Sukma, A. N. Hidayanto, A. I. Pandesenda, A. N. Yahya, P. Widharto, and U. Rahardja, “Sentiment Analysis of the New Indonesian Government Policy (Omnibus Law) on Social Media Twitter,†in International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 153–158. doi: 10.1109/ICIMCIS51567.2020.9354287.

L. Zhang, S. Wang, and B. Liu, “Deep learning for sentiment analysis: A survey,†Wiley Interdiscip Rev Data Min Knowl Discov, vol. 8, no. 4, Jul. 2018, doi: 10.1002/widm.1253.

R. Monika, S. Deivalakshmi, and B. Janet, “Sentiment Analysis of US Airlines Tweets using LSTM/RNN,†9th International Conference on Advanced Computing (IACC), pp. 92–95, 2019, doi: 10.1109/IACC48062.2019.8971592.

S. Kamiş and D. Goularas, “Evaluation of Deep Learning Techniques in Sentiment Analysis from Twitter Data,†in Proceedings - 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications, Deep-ML 2019, Institute of Electrical and Electronics Engineers Inc., Aug. 2019, pp. 12–17. doi: 10.1109/Deep-ML.2019.00011.

A. F. Hidayatullah, S. Cahyaningtyas, and A. M. Hakim, “Sentiment Analysis on Twitter using Neural Network: Indonesian Presidential Election 2019 Dataset,†IOP Conf Ser Mater Sci Eng, vol. 1077, no. 1, p. 012001, Feb. 2021, doi: 10.1088/1757-899x/1077/1/012001.

K. Pasupa and T. Seneewong Na Ayutthaya, “Thai sentiment analysis with deep learning techniques: A comparative study based on word embedding, POS-tag, and sentic features,†Sustain Cities Soc, vol. 50, Oct. 2019, doi: 10.1016/j.scs.2019.101615.

E. M. Dharma, F. Lumban Gaol, H. Leslie, H. S. Warnars, and B. Soewito, “The Accuracy Comparison Among Word2Vec, GloVe, and FastText towards Convolution Neural Network (CNN) Text Classification,†J Theor Appl Inf Technol, vol. 100, no. 2, pp. 349–359, 2022.

G. S. N Murthy, S. Rao Allu, B. Andhavarapu, M. Bagadi, and M. Belusonti, “Text based Sentiment Analysis using LSTM; Text based Sentiment Analysis using LSTM,†International Journal of Engineering Research & Technology (IJERT), vol. 9, no. 5, pp. 299–303, 2020.

Y. Wazery, H. Mohammed, and E. Houssein, “Twitter Sentiment Analysis using Deep Neural Network,†International Computer Engineering Conference (ICENCO), pp. 177–182, 2018, doi: 10.1109/ICENCO.2018.8636119.

A. R. Isnain, N. S. Marga, and D. Alita, “Sentiment Analysis Of Government Policy On Corona Case Using Naive Bayes Algorithm,†IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, no. 1, p. 55, Jan. 2021, doi: 10.22146/ijccs.60718.

A. Yadav and D. K. Vishwakarma, “Sentiment analysis using deep learning architectures: a review,†Artif Intell Rev, vol. 53, no. 6, pp. 4335–4385, Aug. 2020, doi: 10.1007/s10462-019-09794-5.

S. Yang, X. Yu, and Y. Zhou, “LSTM and GRU Neural Network Performance Comparison Study: Taking Yelp Review Dataset as an Example,†in International Workshop on Electronic Communication and Artificial Intelligence (IWECAI), Institute of Electrical and Electronics Engineers Inc., Jun. 2020, pp. 98–101. doi: 10.1109/IWECAI50956.2020.00027.

J. S. Lee, D. Zuba, and Y. Pang, “Sentiment analysis of Chinese product reviews using gated recurrent unit,†in Fifth International Conference on Big Data Computing Service and Applications, Institute of Electrical and Electronics Engineers Inc., Apr. 2019, pp. 173–181. doi: 10.1109/BigDataService.2019.00030.

A. R. Isnain, J. Supriyanto, and M. P. Kharisma, “Implementation of K-Nearest Neighbor (K-NN) Algorithm For Public Sentiment Analysis of Online Learning,†IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, no. 2, pp. 121–130, Apr. 2021, doi: 10.22146/ijccs.65176.

P. H. Prastyo, I. Ardiyanto, and R. Hidayat, “Indonesian Sentiment Analysis: An Experimental Study of Four Kernel Functions on SVM Algorithm with TF-IDF,†in International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI), Institute of Electrical and Electronics Engineers Inc., Oct. 2020, pp. 1–6. doi: 10.1109/ICDABI51230.2020.9325685.

M. P. K. Dewi and E. B. Setiawan, “Feature Expansion Using Word2vec for Hate Speech Detection on Indonesian Twitter with Classification Using SVM and Random Forest,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 2, pp. 979–988, Apr. 2022, doi: 10.30865/mib.v6i2.3855.

N. Nedjah, I. Santos, and L. de Macedo Mourelle, “Sentiment analysis using convolutional neural network via word embeddings,†Evol Intell, vol. 15, no. 4, pp. 2295–2319, Dec. 2019, doi: 10.1007/s12065-019-00227-4.

S. Thavareesan and S. Mahesan, “Sentiment Lexicon Expansion using Word2vec and fastText for Sentiment Prediction in Tamil texts,†in 2020 Moratuwa Engineering Research Conference (MERCon), 2020, pp. 272–276. doi: 10.1109/MERCon50084.2020.9185369.

S. Tiun, U. A. Mokhtar, S. H. Bakar, and S. Saad, “Classification of functional and non-functional requirement in software requirement using Word2vec and fast Text,†J Phys Conf Ser, vol. 1529, no. 4, Jun. 2020, doi: 10.1088/1742-6596/1529/4/042077.

J. He, Y. Hao, and X. Wang, “An interpretable aid decision-making model for flag state control ship detention based on SMOTE and XGboost,†J Mar Sci Eng, vol. 9, no. 2, pp. 1–19, Feb. 2021, doi: 10.3390/jmse9020156.

A. Dutta, S. Kumar, and M. Basu, “A Gated Recurrent Unit Approach to Bitcoin Price Prediction,†Journal of Risk and Financial Management, vol. 13, no. 2, p. 23, Feb. 2020, doi: 10.3390/jrfm13020023.

P. Singh, N. Singh, K. K. Singh, and A. Singh, “Diagnosing of disease using machine learning,†in Machine Learning and the Internet of Medical Things in Healthcare, Elsevier, 2021, pp. 89–111. doi: 10.1016/B978-0-12-821229-5.00003-3.




DOI: https://doi.org/10.30865/mib.v7i3.6391

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.