https://eurogeojournal.eu/ https://jurnal.pendidikanbiologiukaw.ac.id/
https://e-kerja.bnpp.go.id/bkp/https://journal.dkpp.go.id/wow/https://ppid.dkpp.go.id/_fungsi/dana/https://jurnal.pendidikanbiologiukaw.ac.id/https://e-kerja.bnpp.go.id/Pengawas/demo/https://jos.unsoed.ac.id/stats/2024/https://journal.umkendari.ac.id/dm/https://jurnal.radenfatah.ac.id/demo/https://journal.ar-raniry.ac.id/lap/https://sipeg.ui.ac.id/dm/https://e-kerja.bnpp.go.id/Pengawas/dana/
slot gacor 2025slot gacor 2025slot gacor 2025slot gacor 2025slot gacor 2025slot gacor
Implementation of Collaborative Filtering Algorithms in Mobile-Based Food Menu Ordering and Recommendation Systems | Siregar | JURNAL MEDIA INFORMATIKA BUDIDARMA

Implementation of Collaborative Filtering Algorithms in Mobile-Based Food Menu Ordering and Recommendation Systems

Nurini Siregar, Samsudin Samsudin

Abstract


In the business world, the application of technology is becoming common, including in the process of buying or ordering food products which can now be done through a mobile application. Makecents Coffee is a startup in the city of Medan that provides solutions for ordering food and drinks at Android-based restaurants using the QR Code ordering system. To make it easier for buyers to place orders, an automatic recommendation system is needed. One method that can be used to develop an ordering application with a recommendation system is a collaborative filtering algorithm. In this study, a collaborative filtering algorithm was used to work by storing and processing data provided by buyers, such as ratings or comments on the food menu ordered. Using buyer data provides results for users in placing orders because they use an application that has them, as well as making it easier to choose a menu to order because of a recommendation system. The level of accuracy of the prediction of the collaborative filtering algorithm itself has been tested using the MAE and RMSE tests. Where the MAE test obtained a value of 0.67 points, while the RMSE test obtained a value of 0.58 points. The two test results were fairly good when compared to the range of points which only ranged from 1 to 5 points. The results of the recommendations can be implemented in applications designed to increase sales and make it easier to place orders that have been recommended to users.


Keywords


Collaborative Filtering; QR Code; Mobile Application; Cossine Similarity

Full Text:

PDF

References


s. Poudel dan m. Bikdash, “optimal dependence of performance and efficiency of collaborative filtering on random stratified subsampling,†big data min. Anal., vol. 5, no. 3, hal. 192–205, 2022, doi: 10.26599/bdma.2021.9020032.

r. E. Veras de sena rosa, f. A. S. Guimarães, r. D. S. Mendonça, dan v. F. De lucena, “improving prediction accuracy in neighborhood-based collaborative filtering by using local similarity,†ieee access, vol. 8, no. 3, hal. 142795–142809, 2020, doi: 10.1109/access.2020.3013733.

b. Jiang, j. Yang, y. Qin, t. Wang, m. Wang, dan w. Pan, “a service recommendation algorithm based on knowledge graph and collaborative filtering,†ieee access, vol. 9, no. 3, hal. 50880–50892, 2021, doi: 10.1109/access.2021.3068570.

dining dwi suci riyani, “sistem rekomendasi hotel di yogyakarta menggunakan metode item-based collaborative filtering dengan algoritma k-nearest neighbor,†j. Univeristas islam indones., vol. 3, no. 2, hal. 96–107, 2022, doi: 123456789/39437.

f. Nurhani dan samsudin, “implementasi algoritma collaborative filtering pada sistem pemesanan makanan dan minuman dengan platform android,†j. Ilm. Komputasi, vol. 21, no. 3, hal. 317–332, 2022, doi: 10.32409/jikstik.21.3.3110.

m. S. Kabul dan e. B. Setiawan, “recommender system with user-based and item-based collaborative filtering on twitter using k-nearest neighbors classification,†j. Comput. Syst. Informatics, vol. 3, no. 4, hal. 478–484, 2022, doi: 10.47065/josyc.v3i4.2204.

b. Fajrin, dwi puspitasari, dan deasy sandhya elya ikawati, “pengembangan sistem rekomendasi menu paket meeting menggunakan metode fp-growth (studi kasus lotus garden hotel kediri),†j. Inform. Polinema, vol. 6, no. 3, hal. 15–22, 2020, doi: 10.33795/jip.v6i3.307.

r. Nova saputra, m. Tanzil furqon, dan indriati, “implementasi association rule mining untuk menentukan menu paket makanan dengan algoritma fin menggunakan nodesets (studi kasus r.m. lesehan nova sragen),†j. Pengemb. Teknol. Inf. Dan ilmu komput., vol. 2, no. 10, hal. 3962–3967, 2018.

h. Pandiangan, “implementasi association rule mining untuk menentukan menu makanan dengan algoritma apriori,†j. Mantik penusa, vol. 3, no. 1, hal. 31–36, 2019, doi: 10.37859/jf.v10i3.2308.

m. Naufal et al., “sistem rekomendasi layanan pemesanan makanan ‘eataja’ menggunakan algoritma collaborative filtering,†e-proceeding eng., vol. 8, no. 5, hal. 1–8, 2021,

h. Zhang, c. Wang, dan w. Fan, “a new filter collaborative state transition algorithm for two-objective dynamic reactive power optimization,†tsinghua sci. Technol., vol. 24, no. 1, hal. 30–43, 2019, doi: 10.26599/tst.2018.9010068.

q. H. Le, t. N. Mau, r. Tansuchat, dan v. N. Huynh, “a multi-criteria collaborative filtering approach using deep learning and dempster-shafer theory for hotel recommendations,†ieee access, vol. 10, no. 4, hal. 37281–37293, 2022, doi: 10.1109/access.2022.3165310.

f. Rizky dan w. Gunawan, “implementasi algoritma collaboration filtering dalam website e-commerce (studi kasus toko indri collection),†fakt. Exacta, vol. 15, no. 1, hal. 1979–276, 2022, doi: 10.30998/faktorexacta.v15i1.11741.

m. S. U. Herny februariyanti, aryo dwi laksono, jati sasongko wibowo, “implementasi metode collaborative filtering untuk sistem diterbitkan :,†j. Khatulistiwa inform., vol. Ix, no. I, hal. 43–50, 2021, doi: 10.31294/jki.v9i1.9859.

g. Ferio, r. Intan, dan s. Rostianingsih, “sistem rekomendasi mata kuliah pilihan menggunakan metode user based collaborative filtering berbasis algoritma adjusted cosine similarity,†j. Infra, vol. 7, no. 1, hal. 1–7, 2019.

k. R. Sari, w. Suharso, dan y. Azhar, “pembuatan sistem rekomendasi film dengan menggunakan metode item based collaborative filtering pada apache mahout,†j. Repos., vol. 2, no. 6, hal. 767, 2020, doi: 10.22219/repositor.v2i6.936.

b. Prasetyo, h. Haryanto, s. Astuti, e. Z. Astuti, dan y. Rahayu, “implementasi metode item-based collaborative filtering dalam pemberian rekomendasi calon pembeli aksesoris smartphone,†eksplora inform., vol. 9, no. 1, hal. 17–27, 2019, doi: 10.30864/eksplora.v9i1.244.

a. Salam dan a. Makhtum, “implementasi jaminan produk halal melalui sertifikasi halal pada produk makanan dan minuman umkm di kabupaten sampang,†qawwam leader’s writ., vol. 3, no. 1, hal. 10–20, 2022, doi: 10.32939/qawwam.v2i2.110.

f. Nugroho dan m. Ismu rahayu, “sistem rekomendasi produk ukm di kota bandung menggunakan algoritma collaborative filtering,†j. Ris. Sist. Inf. Dan teknol. Inf., vol. 2, no. 3, hal. 23–31, 2020, doi: 10.52005/jursistekni.v2i3.63.

d. Aisha dan r. Kusumawati, “implementasi metode algoritma collaborative filtering dan k-nearest neighbor pada sistem rekomendasi e-commerce,†juisik, vol. 2, no. 3, hal. 25–38, 2022, doi: 10.55606/juisik.v2i3.314.

m. Naufal et al., “implementasi sistem rekomendasi makanan pada aplikasi eataja menggunakan algoritma collaborative filtering,†multinetic, vol. 7, no. 2, hal. 177–185, 2022.

d. Siswanto, z. Zamzami, l. Nijal, s. Rajab, dan s. Ridar wilis rambe, “aplikasi rekomendasi dalam pemilihan buku siswa di perpustakaan menggunakan metode collaborative filtering pada smkn 2 mandau berbasis web,†zo. J. Sist. Inf., vol. 4, no. 1, hal. 101–116, 2022, doi: 10.31849/zn.v4i1.9531.

f. Fadillah dan s. Adhi, “perancangan dan implementasi prediksi saham pada aplikasi berbasis android menggunakan metode support vector regression,†e-proceeding of engginering, vol. 7, no. 23869–3876, 2020.

a. N. Putri, t. Informatika, s. Informasi, t. Informatika, dan k. Makassar, “sistem rekomendasi peminjaman buku dengan metode user-based collaborative filtering pada,†j. Innov., vol. 05, no. 01, hal. 1–10, 2023, doi: 10.47080/iftech.v5i1.2420.

t. Singh, a. Raut, d. Agarwal, dan r. Jha, “food recommendation system using neural collaborative filtering and sentiment analysis,†j. Rekayasa teknol. Nusa putra, vol. 2, no. 7, hal. 1–7, 2020.

r. Aziz, m. Rizka, dan m. Abdi, “penerapan rekomendasi menu dan self order pada aplikasi e- menu restoran menggunakan metode collaborative filtering berbasis android,†j. Artif. Intell. Sofware enggineering, vol. 61, hal. 1–7, 2022, doi: 10.30811/jaise.v2i1.3875.

a. Rosita, n. Puspitasari, dan v. Z. Kamila, “rekomendasi buku perpustakaan kampus dengan metode item-based collaborative filtering,†sebatik, vol. 26, no. 1, hal. 340–346, 2022, doi: 10.46984/sebatik.v26i1.1551.




DOI: https://doi.org/10.30865/mib.v7i3.6387

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.