Analisis Sentimen Terhadap Isu Resesi Tahun 2023 di Indonesia menggunakan Metode Naïve Bayes

Authors

  • Naufal Fakhri Zakaria Institut Teknologi Telkom Purwokerto, Purwokerto
  • Merlinda Wibowo Institut Teknologi Telkom Purwokerto, Purwokerto
  • Novanda Alim Setya Nugraha Institut Teknologi Telkom Purwokerto, Purwokerto

DOI:

https://doi.org/10.30865/mib.v7i3.6386

Keywords:

Analisis Sentimen, Naïve Bayes, Resesi

Abstract

Recession is a phenomenon in which the real GDP (gross domestic product) decreases for two consecutive quarters, meaning that economic activities such as distribution, investment, consumption, production will decrease, causing a domino effect that is detrimental to various parties, one of which is layoffs (termination of employment). The recession was initiated by the weakening of the global economy which had an impact on the domestic economy and countries in the world. The stronger the dependence of a country's economy on the global economy, the faster a recession will occur in that country. Indonesian President Joko Widodo predicts that in 2023 Indonesia will be a dark year due to the economic and energy crisis due to COVID-19 and the war between Russia and Ukraine Therefore a sentiment analysis is needed to see public opinion regarding the issue of the 2023 recession in Indonesia. The method used in this study is the Naïve Bayes classification method. Naïve Bayes is a classification algorithm that is widely used in Data Mining or Text Mining. This study aims to search for negative, positive, and neutral comments and to find out the accuracy of the Naïve Bayes method. Sentiment analysis was obtained by means of data cleaning, labeling, TF-IDF, split, Naïve Bayes classification, and evaluation. It is hoped that after making sentiment analysis using the Naïve Bayes method, negative, positive and neutral comments will be obtained and the accuracy of Naïve Bayes will reach 70%.

References

A. Baharudin Vanani and D. Suselo, “DETERMINASI RESESI EKONOMI INDONESIA DIMASA PANDEMI COVID-19,†Menara Ekonomi, vol. VII, no. 2, Oct. 2021, doi: https://doi.org/10.31869/me.v7i2.2634.

I. Heliany, “Prosiding Seminar Stiami Peran Kebijakan Fiskal dalam Mengatasi Resesi Ekonomi di Indonesia,†Prosiding Seminar Stiami, vol. 8, no. 1, 2021, doi: https://doi.org/10.24952/tazkir.v8i1.5079.

Soemartini, “Resesi Perekonomian Indonesia dan Globalisasi Dampak dari Covid 19,†SEMINAR NASIONAL STATISTIKA IX, 2020,

S. Riri Blandina, A. Noor Fitrian, and W. Septiyani, “Strategi Menghindarkan Indonesia dari Ancaman Resesi Ekonomi di Masa Pandemi,†Efektor, vol. 7, no. 2, pp. 181–190, Dec. 2020, doi: 10.29407/e.v7i2.15043.

B. H. Miraza, “Seputar Resesi dan Depresi,†Jurnal Ekonomi KIAT, vol. 30, no. 2, 2019.

N. Ayu Nugraheni and S. Dian Andryanto, “Jokowi Sebut Perekonomian Global Tahun Depan Gelap, Apa itu Resesi Ekonomi?,†tempo.co, Oct. 11, 2022.

T. R. CNBC Indonesia, “RI Kebal Dari Resesi 2023, Kata Siapa? Ini Bukti Ngerinya,†CNBC Indonesia, Oct. 22, 2022.

W. P. Ali, “Analisis Sentimen Masyarakat Terhadap Kinerja Presiden Indonesia Dalam Aspek Ekonomi, Kesehatan, dan Pembangunan Berdasarkan Opini dari Twitter,†e-Proceeding of Engineering, vol. 6, no.2, 2019.

M. I. Lestari and D. Anggraeni, “Analisis Dampak Sentimen Masyarakat Selama Pandemi Covid-19 Terhadap Kurs Rupiah (Studi Kasus Pandemi Covid-19 di Indonesia) Effects Analysis of Public Sentiment on Rupiah Exchange Rates (Case Study of Covid-19 Pandemic in Indonesia),†Jurnal EMBA, vol. 9, no. 1, pp. 1–14, 2021.

A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “ANALISIS SENTIMEN APLIKASI RUANG GURU DI TWITTER MENGGUNAKAN ALGORITMA KLASIFIKASI,†Jurnal Teknoinfo, vol. 14, no. 2, p. 115, Jul. 2020, doi: 10.33365/jti.v14i2.679.

F. F. Abdulloh and I. R. Pambudi, “Analisis Sentimen Pengguna Youtube Terhadap Program Vaksin Covid-19,†CSRID (Computer Science Research and Its Development Journal), vol. 13, no. 3, p. 141, Nov. 2021, doi: 10.22303/csrid.13.3.2021.141-148.

P. Y. Saputra, D. H. Subhi, F. Zain, and A. Winatama, “IMPLEMENTASI SENTIMEN ANALISIS KOMENTAR CHANNEL VIDEO PELAYANAN PEMERINTAH DI YOUTUBE MENGGUNAKAN ALGORITMA NAÃVE BAYES,†Jurnal Informatika Polinema, vol. 5, no. 3, 2019, doi: https://doi.org/10.33795/jip.v5i4.259.

F. Fathur Rahcman and S. Pramana, “Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter,†Indonesian of Health Information Management Journal , vol. 8, no, 2, 2020.

K. A. Padhana and M. Sadikin, “Analisis Sentimen Masyarakat Terhadap Kondisi Perekonomian di Indonesia Pada Masa Pandemi 2020,†Jurnal Ilmu Teknik dan Komputer, vol. 5, no. 2, 2021.

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,†vol. 15, no. 1, 2021, doi: https://doi.org/10.33365/jtk.v15i1.744.

M. I. Fikri, T. S. Sabrila, Y. Azhar, and U. M. Malang, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,†SMATIKA Jurnal, vol. Volume 10 Nomor 02, pp. 71–76, 2020.

G. K. Pati and E. Umar, “Analisis Sentimen Komentar Pengunjung Terhadap Tempat Wisata Danau Weekuri Menggunakan Metode Naive Bayes Classifier Dan K-Nearest Neighbor,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 4, p. 2309, Oct. 2022, doi: 10.30865/mib.v6i4.4635.

R. Watrianthos, M. Giatman, W. Simatupang, R. Syafriyeti, and N. K. Daulay, “Analisis Sentimen Pembelajaran Campuran Menggunakan Twitter Data,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, p. 166, Jan. 2022, doi: 10.30865/mib.v6i1.3383.

Samsir, Ambiyar, U. Verawardina, F. Edi, and R. Watrianthos, “Analisis Sentimen Pembelajaran Daring pada Twitter di Masa Pandemi COVID-19 menggunakan Metode Naïve Bayes,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 1, p. 149, Jan. 2021, doi: 10.30865/mib.v5i1.2604.

S. Widi, “Pengguna Youtube di Dunia Capai 2,41 Miliar pada Kuartal II/2022,†dataindonesia.id, Aug. 10, 2022.

CNN Indonesia, “2023, Ekonomi Dunia ‘Gelap Gulita’?,†Indonesia, Oct. 10, 2022. Accessed: Oct. 28, 2022.

H. Derajad Wijaya and S. Dwiasnati, “Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat,†JURNAL INFORMATIKA, vol. 7, no. 1, 2020, doi: https://doi.org/10.31311/ji.v7i1.6203.

R. Saputra and A. J. P. Sibarani, “Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Meningkatkan Pola Penjualan Obat,†Jurnal Teknik Informatika dan Sistem Informasi, vol. 7, no. 2, 2020.

W. Yulita et al., “Analisis Sentimen Terhadap Opini Masyarakat Tentang Vaksin Covid-19 Menggunakan Algoritma Naïve Bayes Classifier,†JDMSI, vol. 2, no. 2, pp. 1–9, 2021, doi: https://doi.org/10.33365/jdmsi.v2i2.1344.

D. Duei Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,†Jurnal Informatika dan Teknik Elektro Terapan, vol. 10, no. 1, Jan. 2022, doi: 10.23960/jitet.v10i1.2262.

Downloads

Published

2023-07-23

Issue

Section

Articles