Pengenalan Potensi Racun dan Peningkatan Keamanan Pangan Dalam Jamur Menggunakan Convolutional Neural Network

 (*)Ilham Rafiedhia Pramutighna Mail (Universitas Teknologi Yogyakarta, Sleman, Indonesia)
 Arief Hermawan (Universitas Teknologi Yogyakarta, Sleman, Indonesia)

(*) Corresponding Author

Submitted: June 16, 2023; Published: October 22, 2023

Abstract

One promising advancement in the field of food agriculture is the cultivation of mushrooms. Mushrooms can be broadly classified into two groups: edible mushrooms and non-edible mushrooms. Edible mushrooms serve various purposes, including as food, medicine, and other applications, while non-edible ones can lead to poisoning. However, distinguishing between edible and non-edible mushrooms is a complex task. Even a slight error in selecting suitable mushrooms for consumption can have health repercussions for consumers. The progress in science and technology, particularly in digital image processing, aids in the classification of mushrooms. Image classification using Convolutional Neural Networks (CNNs) presents an alternative to address this issue. This research primarily focuses on identifying potential toxins in mushrooms using CNNs, aiming to contribute to a more efficient and accurate approach in classifying mushrooms fit for consumption. The results demonstrate that the model trained with data augmentation achieved the highest accuracy, with 96.53% for training data and 93.22% for validation data, accompanied by lower loss rates. This underscores that CNNs are an efficient and accurate approach in classifying mushrooms based on their genus. Furthermore, this study also discovered that parameters such as the number of epochs, batch size, optimizer, image size, and image augmentation influence the model training process.

Keywords


Mushroom; Classification; CNN; Deep Learning; Food Safety; Mycology

Full Text:

PDF


Article Metrics

Abstract view : 483 times
PDF - 174 times

References

I. P. Putra, “Kasus-kasus keracunan jamur liar di Indonesia,” Jurnal Ekologi Kesehatan, vol. 20, no. 3, hlm. 215–230, 2021.

F. Nasution, S. R. Prastyaningsih, dan M. Ikhwan, “identifikasi jenis dan habitat jamur makroskopis di hutan larangan adat Rumbio Kabupaten Kampar Provinsi Riau,” Wahana Forestra: Jurnal Kehutanan, vol. 13, no. 1, hlm. 64–76, 2018.

A. R. Aulia, S. W. Ulfa, B. Afrianti, D. I. Sayhafitri, dan F. Khairuddin, “Identifikasi Jenis Jamur Basidiomycetes di Kecamatan Patumbak, Binjai Barat, Medan Marelan,” Jurnal Dirosah Islamiyah, vol. 5, no. 3, hlm. 851–863, 2023.

L. Karlitasari, I. W. Sriyasa, I. Wahyudi, dan H. B. Santosi, “Prediksi Morfologi Jamur Menggunakan Algoritma C5. 0,” Jurnal Teknoinfo, vol. 17, no. 1, hlm. 271–278, 2023.

I. P. Putra, “Kasus keracunan Inocybe sp. di Indonesia,” dalam Prosiding Seminar Nasional Biologi, 2020, hlm. 148–153.

M. P. Amelya, I. P. Putra, R. Hermawan, dan R. Nurzakiah, “Potensi dan Toksisitas Coprinus sp. Liar pada Jerami Padi di Indonesia,” Quagga: Jurnal Pendidikan dan Biologi, vol. 15, no. 1, hlm. 1–8, 2023.

I. P. Putra, “Kasus-Kasus Keracunan Chlorophyllum cf. molybdites di Indonesia|| Poisoning Cases of Chlorophyllum cf. molybdites in Indonesia,” Jurnal Pembelajaran Dan Biologi Nukleus, vol. 7, no. 1, hlm. 186–194, 2021.

S. Winiarti, C. Wukir, U. Ahdiani, dan T. Ismail, “Klasifikasi Image Untuk Jenis Buku Bacaan Anak-Anak dengan Menggunakan Convolutional Neural Network,” Jurnal Media Informatika Budidarma, vol. 6, no. 2, hlm. 738–745, 2022.

M. F. N. Syahbani dan N. G. Ramadhan, “Klasifikasi Gerakan Yoga dengan Model Convolutional Neural Network Menggunakan Framework Streamlit,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 1, hlm. 509–519, 2023.

R. Hanseliani dan C. K. Adi, “Klasifikasi berbagai jenis jamur layak konsumsi dengan metode backpropagation,” MEANS (Media Informasi Analisa dan Sistem), vol. 4, no. 2, hlm. 200–209, 2019.

A. A. Mahran, R. K. Hapsari, dan H. Nugroho, “Penerapan Naive Bayes Gaussian Pada Klasifikasi Jenis Jamur Berdasarkan Ciri Statistik Orde Pertama,” Network Engineering Research Operation, vol. 5, no. 2, hlm. 91–99, 2020.

R. Hayami dan I. Gunawan, “Klasifikasi jamur menggunakan algoritma naïve bayes,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 3, no. 1, hlm. 28–33, 2022.

M. R. Al Aziz, M. T. Furqon, dan L. Muflikhah, “Klasifikasi Jamur Dapat Dimakan atau Beracun Menggunakan Naïve Bayes dan Seleksi Fitur berbasis Association Rule Mining,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 8, hlm. 3948–3955, 2022.

U. S. Rahmadhani dan N. L. Marpaung, “Klasifikasi Jamur Berdasarkan Genus Dengan Menggunakan Metode CNN,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 8, no. 2, hlm. 169–173, 2023.

A. Jakaria, S. Mu’minah, D. Riana, dan S. Hadianti, “Klasifikasi Varietas Buah Kiwi dengan Metode Convolutional Neural Networks Menggunakan Keras,” Jurnal MEdia Informatika Budidarma, vol. 5, no. 4, hlm. 1309–1315, 2021.

H. P. Rahman, J. Indra, dan R. Rahmat, “Penerapan Convolutional Neural Network pada Timbangan Pintar Menggunakan ESP32-CAM,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 1, hlm. 283–291, 2023.

D. Husen, K. Kusrini, dan K. Kusnawi, “Deteksi Hama Pada Daun Apel Menggunakan Algoritma Convolutional Neural Network,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 4, hlm. 2103–2110, 2022.

M. A. Amrustian dan M. Wibowo, “Implementasi Metode Convolutional Neural Network untuk Klasifikasi Breast Cancer pada Citra Histopatologi,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 1, hlm. 41–49, 2023.

S. Ilahiyah dan A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” JUSTINDO (Jurnal Sistem Dan Teknologi Informasi Indonesia), vol. 3, no. 2, hlm. 49–56, 2018.

I. Wulandari, H. Yasin, dan T. Widiharih, “Klasifikasi citra digital bumbu dan rempah dengan algoritma convolutional neural network (cnn),” Jurnal Gaussian, vol. 9, no. 3, hlm. 273–282, 2020.

B. P. Hartato, “Penerapan Convolutional Neural Network pada Citra Rontgen Paru-Paru untuk Deteksi SARS-CoV-2,” Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), vol. 5, no. 4, hlm. 747–759, 2021.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Pengenalan Potensi Racun dan Peningkatan Keamanan Pangan Dalam Jamur Menggunakan Convolutional Neural Network

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.