Analisis Sentimen Opini Pengguna Twitter Terhadap Tragedi Kanjuruhan Malang dengan Metode Support Vector Machine
|
Abstract
The Kanjuruhan tragedy on October 1, 2022, strongly impacted Indonesian football stadium safety. At the Kanjuruhan Stadium, a Persebaya vs. Arema FC match resulted in the deaths of 135 supporters. Due to the significant number of fatalities, there is ongoing debate regarding the responsible parties for the tragedy. Since there are expected to be 18.45 million active users in Indonesia by 2022, Twitter research helps determine popular attitudes. Support Vector Machine is used in this work to evaluate tweets and identify whether they include positive or negative emotions. The categorization outcomes may influence how the public views those responsible for the tragedy. On October 6, 2022, specific Twitter data on tear gas riots, oppressive government, rivalry between supporters, and violence against authorities were taken into account. The sentiment classes are negative, neutral, and positive. The study attained a 95.55% f1-score, 95.16% accuracy, 97.56% precision, and 95.16% recall.
Keywords
Full Text:
PDFArticle Metrics
Abstract view : 405 timesPDF - 89 times
References
F. Dahlan, “GAMBARAN REAKSI BERLEBIHAN SUPPORTER KLUB SEPAKBOLA LOKAL DI INDONESIA: LITERATUR REVIEW,” JURNAL STAMINA, vol. 5, no. 7, 2022, [Online]. Available: http://stamina.ppj.unp.ac.id
H. Aziz, N. Wahyu Sitasari, and S. M, “SUPORTER REMAJA SEPAK BOLA: FANATISME MEMPENGARUHI PERILAKU AGRESI?,” JCA Psikologi, vol. 3, no. 1, pp. 82–91, 2022.
A. Ferianto, “Tragedi Suporter Kanjuruhan Malang: Analisis Twitter Sebagai Alat Komunikasi Digital Pemerintah dan Organisasi Sepakbola Indonesia,” Journal of Society Bridge, vol. 1, no. 1, pp. 1–16, 2023, [Online]. Available: https://www.bk3s.org/ojs/index.php/jsb
D. Subekti and Z. Qodir, “Analysis Twitter’s as Tools a Political Campaigns For New Party during the 2020 Regional Head Election in Indonesia,” The 8th International Conference on Research in Behavioral & Social Science, pp. 63–75, May 2021.
M. Syafira Mawardha and O. Purnamasari, “AKTIVITAS KOMUNIKASI PEMASARAN TERPADU DI AKUN FANBASE TWITTER OFFICIAL 7BTS UPDATE SEBAGAI SARANA LOYALITAS TERHADAP BOYBAND BTS,” Prespektif Komunikasi, vol. 6, no. 2, pp. 183–197, Dec. 2022.
Y. Rinestu and W. Handayani, “Managemen Privasi Komunikasi Media Sosial Twitter Oleh Mahasiswa UNY,” (LEKTUR) JURNAL ILMU KOMUNIKASI , vol. 5, no. 1, pp. 22–32, 2022.
Herianto, “PENERAPAN TEXT-MINING UNTUK MENGIDENTIFIKASI PENGGUNA TWITTER TERHADAP FENOMENA PERAN DPR RI,” Jurnal Sains & Teknologi, vol. 8, no. 2, pp. 36–44, 2018.
M. R. Fais Sya’ bani, U. Enri, and T. N. Padilah, “Analisis Sentimen Terhadap Bakal Calon Presiden 2024 Dengan Algoritme Naïve Bayes,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 2, p. 265, Apr. 2022, doi: 10.30865/jurikom.v9i2.3989.
P. Aditiya, U. Enri, and I. Maulana, “Analisis Sentimen Ulasan Pengguna Aplikasi Myim3 Pada Situs Google Play Menggunakan Support Vector Machine,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 4, p. 1020, Aug. 2022, doi: 10.30865/jurikom.v9i4.4673.
N. Legiawati, T. I. Hermanto, and Y. R. Ramadhan, “Analisis Sentimen Opini Pengguna Twitter Terhadap Perusahaan Jasa Ekspedisi Menggunakan Algoritma Naïve Bayes Berbasis PSO,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 4, p. 930, Aug. 2022, doi: 10.30865/jurikom.v9i4.4629.
C. Rahmawati and P. Sukmasetya, “Sentimen Analisis Opini Masyarakat Terhadap Kebijakan Kominfo atas Pemblokiran Situs non-PSE pada Media Sosial Twitter,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 5, p. 1393, Oct. 2022, doi: 10.30865/jurikom.v9i5.4950.
N. Fitriyah, B. Warsito, D. Asih, and I. Maruddani, “Analisis Sentimen Gojek Pada Media Sosial Twitter Dengan Klasifikasi Support Vector Machine (SVM),” JURNAL GAUSSIAN, vol. 9, no. 3, pp. 376–390, 2020, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/
F. Ernst and A. Schweikard, Fundamentals of Machine Learning : Support Vector Machine Made Easy. UTB GmbH UVK, 2020.
M. N. Murty and R. Raghava, Support Vector Machines and Perceptrons. in SpringerBriefs in Computer Science. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-41063-0.
S. A. Naufal, A. Adiwijaya, and W. Astuti, “Analisis Perbandingan Klasifikasi Support Vector Machine (SVM) dan K-Nearest Neighbors (KNN) untuk Deteksi Kanker dengan Data Microarray,” JURIKOM (Jurnal Riset Komputer), vol. 7, no. 1, p. 162, Feb. 2020, doi: 10.30865/jurikom.v7i1.2014.
R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 3, p. 650, Jul. 2020, doi: 10.30865/mib.v4i3.2181.
H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, Feb. 2021, doi: 10.34148/teknika.v10i1.311.
P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” vol. 8, no. 1, pp. 147–156, 2021, doi: 10.25126/jtiik.202183944.
M. I. Petiwi, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Gofood Berdasarkan Twitter Menggunakan Metode Naïve Bayes dan Support Vector Machine,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, p. 542, Jan. 2022, doi: 10.30865/mib.v6i1.3530.
N. Legiawati, T. I. Hermanto, and Y. R. Ramadhan, “Analisis Sentimen Opini Pengguna Twitter Terhadap Perusahaan Jasa Ekspedisi Menggunakan Algoritma Naïve Bayes Berbasis PSO,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 4, p. 930, Aug. 2022, doi: 10.30865/jurikom.v9i4.4629.
T. Astuti and Y. Astuti, “Analisis Sentimen Review Produk Skincare Dengan Naïve Bayes Classifier Berbasis Particle Swarm Optimization (PSO),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 4, p. 1806, Oct. 2022, doi: 10.30865/mib.v6i4.4119.
M. K. Rifa, Moch. H. Totohendarto, and M. R. Muttaqin, “Analisis Sentimen Penguna E-Wallet Dana Dan Gopay Pada Twitter Menggunakan Metode Support Vector Machine (SVM),” JURNAL TEKNIKA, vol. 17, no. 2, pp. 323–332, 2023.
A. Zamsuri, S. Defit, and G. W. Nurcahyo, “Classification Of Multiple Emotions In Indonesian Text Using The K-Nearest Neighbor Method,” Journal of Applied Engineering and Technological Science, vol. 4, no. 2, pp. 1012–1021, 2023.
F. Koto and G. Y. Rahmaningtyas, “Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs,” in Proceedings of the 2017 International Conference on Asian Language Processing, IALP 2017, Institute of Electrical and Electronics Engineers Inc., Feb. 2018, pp. 391–394. doi: 10.1109/IALP.2017.8300625.
E. R. Indriyani, P. Paradise, and M. Wibowo, “Perbandingan Metode Naïve Bayes dan Support Vector Machine Untuk Analisis Sentimen Terhadap Vaksin Astrazeneca di Twitter,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 3, p. 1545, Jul. 2022, doi: 10.30865/mib.v6i3.4220.
Y. Ma and G. Guo, Support Vector Machines Applications. Cham: Springer International Publishing, 2014. doi: 10.1007/978-3-319-02300-7.
H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, Feb. 2021, doi: 10.34148/teknika.v10i1.311.
M. Raja Nurhusen, J. Indra, and K. Ahmad Baihaqi, “Analisis Sentimen Pengguna Twitter Terhadap Kenaikan Harga Bahan Bakar Minyak (BBM) Menggunakan Metode Logistic Regression,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 1, pp. 276–282, Jan. 2023, doi: 10.30865/mib.v7i1.5491.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Opini Pengguna Twitter Terhadap Tragedi Kanjuruhan Malang dengan Metode Support Vector Machine
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.