https://eurogeojournal.eu/ https://jurnal.pendidikanbiologiukaw.ac.id/
https://e-kerja.bnpp.go.id/bkp/https://journal.dkpp.go.id/wow/https://ppid.dkpp.go.id/_fungsi/dana/https://jurnal.pendidikanbiologiukaw.ac.id/https://e-kerja.bnpp.go.id/Pengawas/demo/https://jos.unsoed.ac.id/stats/2024/https://journal.umkendari.ac.id/dm/https://jurnal.radenfatah.ac.id/demo/https://journal.ar-raniry.ac.id/lap/https://sipeg.ui.ac.id/dm/https://e-kerja.bnpp.go.id/Pengawas/dana/
slot gacor 2025slot gacor 2025slot gacor 2025slot gacor 2025slot gacor 2025slot gacor
Perbandingan Algoritma NBC, KNN, dan C4.5 Untuk Klasifikasi Penerima Bantuan Program Keluarga Harapan | Dina | JURNAL MEDIA INFORMATIKA BUDIDARMA

Perbandingan Algoritma NBC, KNN, dan C4.5 Untuk Klasifikasi Penerima Bantuan Program Keluarga Harapan

Aulia Dina, Inggih Permana, Fitriani Muttakin, Idria Maita

Abstract


One of the strategic programs in Indonesia to tackle poverty is the Family Hope Program (PKH) which is carried out by the government by providing cash to very poor families. The problem that occurs in PKH is the distribution of aid that is still not on target. Therefore this study aims to create a classification model for PKH beneficiaries to overcome these problems. The algorithms used to create a classification model are the Naïve Bayes Classifier (NBC), K-Nearest Neighbor (K-NN), and C4.5. The validation method used is K-Fold Cross Validation (K = 10). The number of attributes used is 33 attributes. The data used to construct the classification model (data after pre-processing) is as much as 378 data on prospective PKH beneficiaries. Based on the experimental results the NBC algorithm produces an accuracy value of 77.51%, the K-NN algorithm (K = 3) produces an accuracy value of 76.72%, the C4.5 algorithm produces an accuracy value of 80.16%. In addition, the C4.5 algorithm succeeded in reducing the number of attributes, from 33 attributes to just 8 attributes, namely: number of household members, fasbab, other houses, gold, fridge, number of rooms, walls, and excreta disposal. This reduces the complexity of the classification model generated by the C4.5 algorithm.


Keywords


C4.5; Classification; K-NN; NBC; PKH

Full Text:

PDF

References


R. Adiwilaga, W. Y. Widiyaningrum, and D. I. Hasanah, “Implementasi Kebijakan Peraturan Menteri Sosial Nomor 1 Tahun 2018 Tentang Program Keluarga Harapan (Pkh) Oleh Dinas Sosial Di Kecamatan Pangalengan Kabupaten Bandung,†J. Ilmu Pemerintah. Widya Praja, vol. 46, no. 2, pp. 396–407, 2020, doi: 10.33701/jipwp.v46i2.1368.

I. A. Sasmita, R. Indriati, and M. N. Muzaki, “Rekomendasi Penerima Bantuan Program Keluarga Harapan,†Jambura J. Electr. Electron. Eng., vol. 3, no. 2, pp. 84–88, 2021, doi: 10.37905/jjeee.v3i2.10943.

E. Fitriani, “Perbandingan Algoritma C4.5 Dan Naïve Bayes Untuk Menentukan Kelayakan Penerima Bantuan Program Keluarga Harapan,†Sistemasi, vol. 9, no. 1, p. 103, 2020, doi: 10.32520/stmsi.v9i1.596.

Fabiana Meijon Fadul, “Perbandingan Algoritma K-NN dan Naïve Bayes untuk Klasifikasi Penerima Bantuan Sosial Covid-19 di Sukabumi Selatan,†pp. 85–86, 2019.

I. D. M. N. Nurhadji and Mustikarini, “Analisis dampak pemberian bantuan program keluarga harapan (pkh) terhadap kesejahteraan masyarakat,†Citizsh. J. Pancasila dan Kewarganegaraan, vol. 7, no. 2, pp. 108–116, 2019.

C. Sasmito and E. R. Nawangsari, “Implementasi Program Keluarga Harapan Dalam Upaya Mengentaskan Kemiskinan Di Kota Batu,†JPSI (Journal Public Sect. Innov., vol. 3, no. 2, p. 68, 2019, doi: 10.26740/jpsi.v3n2.p68-74.

I. P. Utami, K. K. Rangga, H. Yanfika, and A. Mutolib, “Kinerja Pendamping Program Keluarga Harapan (PKH) Di Kota Bandar Lampung,†JSHP J. Sos. Hum. dan Pendidik., vol. 5, no. 1, pp. 19–25, 2020, doi: 10.32487/jshp.v5i1.901.

H. Mustofa and A. A. Mahfudh, “Klasifikasi Berita Hoax Dengan Menggunakan Metode Naive Bayes,†Walisongo J. Inf. Technol., vol. 1, no. 1, p. 1, 2019, doi: 10.21580/wjit.2019.1.1.3915.

Y. T. U. Heni Sulistiani, “Penerapan Algoritma Klasifikasi Sebagai Pendukung Keputusan Pemberian Beasiswa Mahasiswa,†Snti, pp. 300–305, 2018.

N. Alfiah, “Klasifikasi Penerima Bantuan Sosial Program Keluarga Harapan Menggunakan Metode Naive Bayes,†Respati, vol. 16, no. 1, p. 32, 2021, doi: 10.35842/jtir.v16i1.386.

I. A. Nikmatun and I. Waspada, “Implementasi Data Mining untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor,†J. SIMETRIS, vol. 10, no. 2, pp. 421–432, 2019.

A. P. Permana, K. Ainiyah, and K. F. H. Holle, “Analisis Perbandingan Algoritma Decision Tree, kNN, dan Naive Bayes untuk Prediksi Kesuksesan Start-up,†JISKA (Jurnal Inform. Sunan Kalijaga), vol. 6, no. 3, pp. 178–188, 2021, doi: 10.14421/jiska.2021.6.3.178-188.

L. Mardiana, D. Kusnandar, and N. Satyahadewi, “Analisis Diskriminan Dengan K Fold Cross Validation Untuk Klasifikasi Kualitas Air Di Kota Pontianak,†Bimaster Bul. Ilm. Mat. Stat. dan Ter., vol. 11, no. 1, pp. 97–102, 2022, [Online]. Available: https://jurnal.untan.ac.id/index.php/jbmstr/article/view/51608.

F. Akbar, A. N. Rais, I. A. Sobari, R. A. Zuama, and B. Rudiarto, “Analisis Performa Algoritma Naive Bayes Pada Deteksi Otomatis Citra Mri,†JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 5, no. 1, pp. 37–42, 2019, doi: 10.33480/jitk.v5i1.586.

M. Deni Akbar and Y. Arie Wijaya, “Klasifikasi Motif Batik Jawa Menggunakan Algoritma K-Nearest Neighbors (Knn),†J. Sist. Inf. dan Manaj., vol. 10, no. 2, 2022, [Online]. Available: https://ejournal.stmikgici.ac.id/.

M. M. Mijwil and R. A. Abttan, “Utilizing the Genetic Algorithm to Pruning the C4.5 Decision Tree Algorithm,†Asian J. Appl. Sci., vol. 9, no. 1, 2021, doi: 10.24203/ajas.v9i1.6503.

A. Syafii, G. Dwilestari, and A. Ajiz, “Komparasi Algoritma Naïve Bayes Dan Algoritma C4.5 Dalam Klasifikasi Pelanggan Produk Indihome,†JURSIMA J. Sist. Inf. dan Manaj., vol. 10, no. 2, pp. 60–70, 2022, [Online]. Available: https://ejournal.stmikgici.ac.id/index.php/jursima/article/view/414.

D. Duei Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,†J. Inform. dan Tek. Elektro Terap., vol. 10, no. 1, pp. 34–40, 2022, doi: 10.23960/jitet.v10i1.2262.

R. Forest and N. Bayes, “Perbandingan Akurasi , Recall , dan Presisi Klasifikasi pada Algoritma,†vol. 5, no. April, pp. 640–651, 2021, doi: 10.30865/mib.v5i2.2937.

E. N. Fitri et al., “DECISION TREE SIMPLIFICATION THROUGH FEATURE SELECTION,†vol. 4, no. 2, 2023.




DOI: https://doi.org/10.30865/mib.v7i3.6316

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.