Sentiment Analysis of Practo Application Reviews Using Naïve Bayes and TF-IDF Methods

 (*)Rizal Adi Putranto Mail (Telkom University, Bandung, Indonesia)
 Mahendra Dwifebri Purbolaksono (Telkom University, Bandung, Indonesia)
 Widi Astuti (Telkom University, Bandung, Indonesia)

(*) Corresponding Author

Submitted: June 9, 2023; Published: July 23, 2023

Abstract

Entering the 4.0 era, it seems that the healthcare industry is the one most likely to benefit from the combination of physical, digital and biological systems. Digital health applications or telemedicine have experienced significant growth in recent years. In the current era, the development of telemedicine is accelerating, one of which is the Practo application. As the number of users using this app increases, it is important to get their opinions in order to improve the health services provided by the app. Therefore, sentiment analysis of the comments regarding the health services on the app is necessary to find out the users' opinions. By utilizing sentiment analysis, it is possible to use the sentiment analysis results obtained as a sample that corresponds to both positive and negative comments. In addition, it can be revealed that there is a mismatch between the ratings and comments given by users. This information has the benefit of being able to improve the Practo application and improve the health services provided to more effectively meet the needs and expectations of users. This research employs the Naïve Bayes approach for sentiment analysis, utilizing TF-IDF feature extraction. Naïve Bayes was chosen because it is known as an efficient classification algorithm but has a high level of accuracy. This approach involves utilizing the Bayes rule formula to calculate probabilities and make classifications. It is applicable for solving classification problems that involve either numeric or nominal feature data. Meanwhile, TF-IDF was chosen because it can associate each word in a document with a numerical value that reflects its level of relevance to the document. TF-IDF is used to measure the weighting of words as features in the summary. In this study, the best model achieved a performance with an f1-score of 85.50%.

Keywords


Sentiment Analysis; Practo Application Review; Naïve Bayes; TF-IDF

Full Text:

PDF


Article Metrics

Abstract view : 408 times
PDF - 175 times

References

J. Nurvania, Jondri, and K. Muslim Lhaksamana, “Analisis Sentimen Pada Ulasan di TripAdvisor Menggunakan Metode Long Short-Term Memory (LSTM),” e-Proceeding Eng., vol. 8, no. 4, pp. 4124–4135, 2021.

N. R. Wardani and A. Erfina, “Konsultasi Dokter Menggunakan Algoritma Naive,” SISMATIK (Seminar Nas. Sist. Inf. dan Manaj. Inform., pp. 11–18, 2021.

M. F. Maulana, L. Ramadani, and F. M. Al-Anshary, “Pengembangan Sistem Telemedicine Berbasis Aplikasi Mobile Menggunakan Metode Iterative Dan Incremental Development of a Telemedicine System Based on Mobile Applications Using Itrative and Incremental Methods,” e-Proceeding Eng., vol. 8, no. 5, pp. 9475–9487, 2021.

R. N. CIKANIA, “Implementasi Algoritma Naïve Bayes Classifier Dan Support Vector Machine Pada Klasifikasi Sentimen Review Layanan Telemedicine Halodoc,” Jambura J. Probab. Stat., vol. 2, no. 2, pp. 96–104, 2021, doi: 10.34312/jjps.v2i2.11364.

A. Hendra and F. Fitriyani, “Analisis Sentimen Review Halodoc Menggunakan Nai ̈ve Bayes Classifier,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 6, no. 2, pp. 78–89, 2021, doi: 10.14421/jiska.2021.6.2.78-89.

M. B. Hamzah, “Classification of Movie Review Sentiment Analysis Using Chi-Square and Multinomial Naïve Bayes with Adaptive Boosting,” J. Adv. Inf. Syst. Technol., vol. 3, no. 1, pp. 67–74, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/jaist

M. T. Razaq, D. Nurjanah, and H. Nurrahmi, “Analisis Sentimen Review Film menggunakan Naive Bayes Classifier dengan fitur Tf-Idf,” vol. 9, no. 5, pp. 6053–6071, 2022.

S. Adji Pratomo, S. Al Faraby, and M. Dwifebri Purbolaksono, “Analisis Sentimen pada Ulasan Film dengan Kombinasi Seleksi Fitur Chi-Square dan TF-IDF menggunakan Metode KNN,” e-Proceeding Eng., vol. 8, no. 5, pp. 10116–10126, 2021.

N. Nuris, E. R. Yulia, and K. Solecha, “Implementasi Particle Swarm Optimization (PSO) Pada Analysis Sentiment Review Aplikasi Halodoc Menggunakan Algoritma Naïve Bayes,” J. Teknol. Inf., vol. 7, no. 1, pp. 17–23, 2021, doi: 10.52643/jti.v7i1.1330.

R. Karisma, S. Lestanti, and M. T. Chulkamdi, “Aplikasi Klasifikasi Sentimen Pada Ulasan Smartphone Di Situs Jual Beli Online Berbasis Web Menggunakan Naive Bayes Dengan Tf-Idf,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 1, pp. 31–37, 2021, doi: 10.36040/jati.v6i1.4365.

S. A. Pratomo, S. Al Faraby, and M. D. Purbolaksono, “Analisis Sentimen Pengaruh Kombinasi Ekstraksi Fitur TF-IDF dan Lexicon Pada Ulasan Film Menggunakan Metode KNN,” eProceedings Eng., vol. 8, no. 5, pp. 10116–10126, 2021.

D. F. Zhafira, B. Rahayudi, and I. Indriati, “Analisis Sentimen Kebijakan Kampus Merdeka Menggunakan Naive Bayes dan Pembobotan TF-IDF Berdasarkan Komentar pada Youtube,” J. Sist. Informasi, Teknol. Informasi, dan Edukasi Sist. Inf., vol. 2, no. 1, pp. 55–63, 2021, doi: 10.25126/justsi.v2i1.24.

M. D. Hendriyanto, A. A. Ridha, and U. Enri, “Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 5, no. 1, pp. 1–7, 2022, doi: 10.31539/intecoms.v5i1.3708.

Merinda Lestandy, Abdurrahim Abdurrahim, and Lailis Syafa’ah, “Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 802–808, 2021, doi: 10.29207/resti.v5i4.3308.

S. Ernawati and R. Wati, “Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Review Agen Travel,” J. Khatulistiwa Inform., vol. 6, no. 1, pp. 64–69, 2018.

J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” J. Intell. Syst. Comput., vol. 1, no. 1, pp. 43–49, 2019, doi: 10.52985/insyst.v1i1.36.

A. V. Sudiantoro et al., “Analisis Sentimen Twitter Menggunakan Text Mining Dengan,” vol. 10, no. 2, pp. 398–401, 2018.

H. Nurrun Muchammad Shiddieqy, S. Paulus Insap, and W. Wing Wahyu, “Studi Literatur Tentang Perbandingan Metode Untuk Proses Analisis Sentimen Di Twitter,” Semin. Nas. Teknol. Inf. dan Komun., vol. 2016, no. March, pp. 57–64, 2016.

A. Munir, E. P. Atika, and A. D. Indraswari, “Analisis Sentimen pada review hotel menggunakan metode pembobotan dan klasifikasi,” Jnanaloka, vol. 3, no. 1, pp. 33–38, 2022, doi: 10.36802/jnanaloka.2022.v3-no1-33-38.

D. A. Nugroho et al., “Analisis Sentimen Data Presiden Jokowi Dengan Preprocessing Normalisasi Dan Stemming Menggunakan Metode Naive Bayes Dan SVM,” Semin. Nas. Teknol. Fak. Tek. Univ. Krisnadwipayana, vol. 3, no. 1, pp. 1–11, 2021, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4793%0Ahttps://jurnal.teknikunkris.ac.id/index.php/semnastek2019/article/view/343/342

K. S. Sara, H. Dan, R. Pada, F. E. Purwiantono, and A. Aditya, “POSTINGAN MEDIA SOSIAL MENGGUNAKAN ALGORITMA NAIVE,” vol. 14, no. 2, pp. 68–73, 2020.

D. E. Kurniawan, D. Swanjaya, and ..., “Penerapan Metode Naïve Bayes Pada Aplikasi Ayo Playon,” Pros. SEMNAS …, pp. 167–171, 2022.

I. Prayoga and M. D. P, “Sentiment Analysis on Indonesian Movie Review Using KNN Method With the Implementation of Chi-Square Feature Selection,” J. Media Inform. Budidarma, vol. 7, pp. 369–375, 2023, doi: 10.30865/mib.v7i1.5522.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.