https://eurogeojournal.eu/ https://jurnal.pendidikanbiologiukaw.ac.id/
https://e-kerja.bnpp.go.id/bkp/https://journal.dkpp.go.id/wow/https://ppid.dkpp.go.id/_fungsi/dana/https://jurnal.pendidikanbiologiukaw.ac.id/https://e-kerja.bnpp.go.id/Pengawas/demo/https://jos.unsoed.ac.id/stats/2024/https://journal.umkendari.ac.id/dm/https://jurnal.radenfatah.ac.id/demo/https://journal.ar-raniry.ac.id/lap/https://sipeg.ui.ac.id/dm/https://e-kerja.bnpp.go.id/Pengawas/dana/
slot gacor 2025slot gacor 2025slot gacor 2025slot gacor 2025slot gacor 2025slot gacor
Optimasi K-means Clustering Dengan Menggunakan Particle Swarm Optimization Untuk Menentukan Jumlah Cluster Pada Kanker Serviks | Setiaji | JURNAL MEDIA INFORMATIKA BUDIDARMA

Optimasi K-means Clustering Dengan Menggunakan Particle Swarm Optimization Untuk Menentukan Jumlah Cluster Pada Kanker Serviks

Indrawan Setiaji, Affandy Affandy, Ahmad Zainul Fanani

Abstract


Cervical cancer is one of the most common cancers among women in the world. It is most common in developing countries. Cervical cancer develops slowly in the body. Clustering is needed so that cervical cancer can be treated quickly. The K-means method was chosen because of its ability to group large amounts of data and fast computation time. The K-means method is also very easy to implement, flexible, and uses simple principles, which can be explained non-statistically. The many advantages that K-means has, also has weaknesses because it uses random clustering numbers and the results are not optimal. The difficulty in accurately determining the amount of clustering in the dataset. The K-means method cannot provide an optimal solution for determining the number of clustering, so it needs to be improved in order to obtain an optimal solution. PSO was chosen because it has several advantages, namely requiring few parameters, easy to implement, fast convergence, more efficient because it requires little computation and is simple. The results showed that the PSO - K-means method can prove to provide a significant contribution by directly obtaining optimum clustering results without having to do repeated experiments with a Silhouette Coefficient value of 0.83 and a Davies Bouldien Index value of 1.91.

Keywords


PSO-K-Means; K-Means; Number of Clustering; Clustering; Particle Swarm Optimization; Silhouette Coefficients; Davies Bouldin Index

Full Text:

PDF

References


E. J. Corwin, “Buku Saku Patofisiologi , Handbook Of Pathophysiology,†3. pp. 839–842, 2009.

N. Octavinna, A. Zuhratun, and A. Y. Chaerunnisa, “Aktivitas Senyawa Aktif Michelia champaca Sebagai Inhibitor Topoisomerase Antikanker,†J. Farmaka, vol. 16, no. 3, pp. 213–221, 2018.

N. Kashyap, N. Krishnan, S. Kaur, and S. Ghai, “Risk Factors of Cervical Cancer: A Case-Control Study,†Asia-Pacific J. Oncol. Nurs., vol. 6, no. 3, pp. 308–314, 2019, doi: 10.4103/apjon.apjon_73_18.

I. Rasjidi, “Epidemiologi Kanker Serviks,†Indones. J. Cancer, vol. 3, no. 3, pp. 103–108, 2009, doi: 10.33371/ijoc.v3i3.123.

S. Sherly and M. M. Yunita, “Optimisme Pada Wanita Penderita Kanker Payudara Berusia Dewasa Tengah,†J. Muara Med. dan Psikol. Klin., vol. 1, no. 1, p. 40, 2021, doi: 10.24912/jmmpk.v1i1.12062.

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, “Global cancer statistics, 2012,†CA. Cancer J. Clin., vol. 65, no. 2, pp. 87–108, 2015, doi: 10.3322/caac.21262.

P. R. Evriarti and A. Yasmon, “Patogenesis Human Papillomavirus (HPV) pada Kanker Serviks,†J. Biotek Medisiana Indones., vol. 8, no. 1, pp. 23–32, 2019, doi: 10.22435/jbmi.v8i1.2580.

N. F. Adani et al., “Implementasi Data Mining Untuk Pengelompokan Data Penjualan Berdasarkan Pola Pembelian Menggunakan Algoritma K-Means Clustering Pada Toko Syihan,†no. x, pp. 1–11, 2019.

U. Syafiyah, I. Asrafi, B. Wicaksono, D. P. Puspitasari, and M. Sirait, “Analisis Perbandingan Metode Cluster Data Indikator Ketenagakerjaan di Jabar2020……………………………………,†vol. 2020, pp. 803–812, 2020.

A. Hakim and A. Hamid, “Performance Analysis of Hierarchical and Non- Hierarchical Clustering Techniques,†vol. 9, no. 2, pp. 54–71, 2020.

D. Missa, S. Achmadi, and A. Mahmudi, “Penerapan Metode Clustering Dengan Algoritma K-Means Pada Pengelompokan Data Penghasilan Orang Tua Siswa,†JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 1, pp. 125–133, 2021, doi: 10.36040/jati.v5i1.3275.

Z. Wang, A. Xu, Z. Zhang, C. Wang, A. Liu, and X. Hu, “The parallelization and optimization of K-means algorithm based on spark,†15th Int. Conf. Comput. Sci. Educ. ICCSE 2020, no. Iccse, pp. 457–462, 2020, doi: 10.1109/ICCSE49874.2020.9201770.

I. B. G. Sarasvananda, R. Wardoyo, and A. K. Sari, “The K-Means Clustering Algorithm With Semantic Similarity To Estimate The Cost of Hospitalization,†IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 13, no. 4, p. 313, 2019, doi: 10.22146/ijccs.45093.

Y. Li and H. Wu, “A Clustering Method Based on K-Means Algorithm,†Phys. Procedia, vol. 25, pp. 1104–1109, 2012, doi: 10.1016/j.phpro.2012.03.206.

S. I. Murpratiwi, I. G. Agung Indrawan, and A. Aranta, “Analisis Pemilihan Cluster Optimal Dalam Segmentasi Pelanggan Toko Retail,†J. Pendidik. Teknol. dan Kejuru., vol. 18, no. 2, p. 152, 2021, doi: 10.23887/jptk-undiksha.v18i2.37426.

A. Perdana, “Analisis Perbandingan Metode Genetic Algorithm dan Particle Swarm Optimization dalam Menilai Tingkat Optimasi Hasil Pada Bin Packing Problem Satu Dimensi,†Pros. SNASTIKOM 2017, pp. 1–6, 2017.

J. Karimov and M. Ozbayoglu, “Clustering Quality Improvement of k-means Using a Hybrid Evolutionary Model,†Procedia Comput. Sci., vol. 61, pp. 38–45, 2015, doi: 10.1016/j.procs.2015.09.143.

P. Bholowalia and A. Kumar, “EBK-Means: A Clustering Technique based on Elbow Method and K-Means in WSN,†Int. J. Comput. Appl., vol. 105, no. 9, pp. 975–8887, 2014.

Y. Fang and J. Wang, “Selection of the number of clusters via the bootstrap method,†Comput. Stat. Data Anal., vol. 56, no. 3, pp. 468–477, 2012, doi: 10.1016/j.csda.2011.09.003.

J. Wang, “Consistent selection of the number of clusters via crossvalidation,†Biometrika, vol. 97, no. 4, pp. 893–904, 2010, doi: 10.1093/biomet/asq061.




DOI: https://doi.org/10.30865/mib.v7i3.6292

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.