ojs2 has produced an error Message: WARNING: include(/home/stmikbud/public_html/ejurnal/cache/fc-pluginSettings-3-flagcounter.php): failed to open stream: Permission denied In file: /home/stmikbud/public_html/ejurnal/lib/pkp/classes/cache/FileCache.inc.php At line: 44 Stacktrace: Server info: OS: Linux PHP Version: 5.6.40 Apache Version: N/A DB Driver: mysql DB server version: 10.6.22-MariaDB
ojs2 has produced an error Message: WARNING: include(): Failed opening '/home/stmikbud/public_html/ejurnal/cache/fc-pluginSettings-3-flagcounter.php' for inclusion (include_path='.:/home/stmikbud/public_html/ejurnal/classes:/home/stmikbud/public_html/ejurnal/pages:/home/stmikbud/public_html/ejurnal/lib/pkp:/home/stmikbud/public_html/ejurnal/lib/pkp/classes:/home/stmikbud/public_html/ejurnal/lib/pkp/pages:/home/stmikbud/public_html/ejurnal/lib/pkp/lib/adodb:/home/stmikbud/public_html/ejurnal/lib/pkp/lib/phputf8:/home/stmikbud/public_html/ejurnal/lib/pkp/lib/pqp/classes:/home/stmikbud/public_html/ejurnal/lib/pkp/lib/smarty:.:/opt/alt/php56/usr/share/pear:/opt/alt/php56/usr/share/php') In file: /home/stmikbud/public_html/ejurnal/lib/pkp/classes/cache/FileCache.inc.php At line: 44 Stacktrace: Server info: OS: Linux PHP Version: 5.6.40 Apache Version: N/A DB Driver: mysql DB server version: 10.6.22-MariaDB
Prediksi Jumlah Perceraian Menggunakan Metode Multilayer Perceptron | Hamdi | JURNAL MEDIA INFORMATIKA BUDIDARMA

Prediksi Jumlah Perceraian Menggunakan Metode Multilayer Perceptron

Ikhsanul Hamdi, Elvia Budianita, Fadhilah Syafria, Iis Afrianty

Abstract


Divorce is a situation when a married couple decides to end their relationship and separate legally. The increasing number of cases in divorce cases filed at the Bangkinang Religious Court every month has led to a gradual increase and decrease. This study uses the Multilayer Perceptron (MLP) method and evaluates using Mean Squared Error (MSE) to determine prediction accuracy. The data used is divorce data from the Bangkinang Religious Court from January 2014 to December 2022 collected and processed from the Religious Court office. A total of 102 data in the form of time series data. In this study using MLP which consists of three layers, namely the input layer, hidden layer, and output layer. And using architectural testing consisting of 6-7-1, 6-9-1, and 6-12-1 with learning rate parameters: 0.01, 0.03, 0.09 with a comparison of training and test data 70:30, 80:20, 90 :10. Based on the test results using MSE, the best architecture was obtained, namely by comparing data 90:10 with 6-9-1 architecture, learning rate: 0.03, Epoch: 300, Alpha fixed value: 0.1, MSE results were successfully obtained: 0.01144 and the pattern of the number of splits from January until May 2023 has decreased, thus, this MLP can provide predictive results that help in predicting the number of divorces.

Keywords


Divorce; MLP; Model; MSE; Predictions

Full Text:

PDF

References


N. Osela, “Komunikasi Persuasif Mediator dalam Perkara Perceraian di Pengadilan Agama Bangkinang,†Jom Fisip, vol. 6, no. 2, pp. 1–15, 2019.

F. L. Limbong, H. Ismi, and U. Hasanah, “Akibat Hukum Perceraian Terhadap Pembagian Harta Bersama Berdasarkan Kompilasi Hukum Islam Di (Kelurahan Tanah …,†J. Online Mhs. Bid. Ilmu Huk., vol. V, no. April 2018, pp. 1–23, 2018.

N. Y. A, “A ‘missing’ family of classical orthogonal polynomials,†Jom Fisip, vol. 44, no. 8, pp. 1–8, 2018, doi: 10.1088/1751-8113/44/8/085201.

H. Mukhtar, R. Muhammad, T. Reny Medikawati, and Yoze Rizki, “Peramalan Kedatangan Wisatawan Mancanegara Ke Indonesia Menurut Kebangsaan Perbulannya Menggunakan Metode Multilayer Perceptron,†J. CoSciTech (Computer Sci. Inf. Technol., vol. 2, no. 2, pp. 113–119, 2021, doi: 10.37859/coscitech.v2i2.3324.

K. Khoirudin, D. Nurdiyah, and N. Wakhidah, “Prediksi Penerimaan Mahasiswa Baru Dengan Multi Layer Perceptron,†J. Pengemb. Rekayasa dan Teknol., vol. 14, no. 1, p. 1, 2019, doi: 10.26623/jprt.v14i1.1212.

S. Sen, D. Sugiarto, and A. Rochman, “Prediksi Harga Beras Menggunakan Metode Multilayer Perceptron (MLP) dan Long Short Term Memory (LSTM),†Ultim. J. Tek. Inform., vol. 12, no. 1, pp. 35–41, 2020, doi: 10.31937/ti.v12i1.1572.

M. Resha and S. Syamsu, “Prediksi Penyebaran Kasus Tuberkulosis dengan metode Artificial Neural Network dan Multi-Layer Perceptron di kota makassar,†JNSTA J. Nat. Sci. Technol. ADPERTISI, vol. 2, no. 1, 2021.

P. Githa Pratiwi, I. Ketut Gede Darma Putra, and D. Purnami Singgih Putri, “Peramalan Jumlah Tersangka Penyalahgunaan Narkoba Menggunakan Metode Multilayer Perceptron,†J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 7, no. 2, p. 143, 2019, doi: 10.24843/jim.2019.v07.i02.p06.

M. A. B. Ferdinand, A. P. Wibawa, I. A. E. Zaeni, and H. A. Rosyid, “Single Exponential Smoothing-Multilayer Perceptron Untuk Peramalan Pengunjung Unik Jurnal Elektronik,†Mob. Forensics, vol. 2, no. 2, pp. 62–70, 2020, doi: 10.12928/mf.v2i2.2034.

G. Asgaruning and A. Primajaya, “Jaringan Syaraf Tiruan Untuk Prediksi Daerah Rawan Banjir Studi Kasus Kabupaten Karawang,†JOINS (Journal Inf. Syst., vol. 6, no. 2, pp. 153–161, 2021, doi: 10.33633/joins.v6i2.4577.

N. Nafiiyah, “Rice Price Prediction System Based on Rice Quality and Milling Level using Multilayer Perceptron,†J. Inform. Univ. Pamulang, vol. 7, no. 1, pp. 39–43, 2022.

Y. M. Nimas R, “Penerapan Multilayer Perceptron Untuk Identifikasi Kanker Payudara,†JCI J. Cakrawala Ilm., vol. 2, no. 8, pp. 3261–3268, 2023, doi: 10.31862/9785426311961.

I. Mp et al., “Implementasi Multilayer Perceptron Untuk Memprediksi Harapan Hidup Pada Pasien Penyakit Kardiovaskular,†J. Sains Komput. Inform. (J-SAKTI, vol. 6, no. 1, pp. 57–68, 2022.

Y. Shara Lubis, A. Marwan Elhanafi, and H. Dafitri, “Implementasi Root Mean Square Error Untuk Melakukan PrediksiHarga Emas Dengan Menggunakan Algoritma Multilayer Perceptron,†Snastikom, vol. 8, pp. 2–6, 2021.

P. A. Nugroho, “KOMPUTA : Jurnal Ilmiah Komputer dan Informatika Implementasi Jaringan Syaraf Tiruan Multi-Layer Perceptron Untuk Prediksi Penyinaran KOMPUTA : Jurnal Ilmiah Komputer dan Informatika,†vol. 12, no. 1, pp. 82–90, 2023.

J. R. Saragih, D. Hartama, and A. Wanto, "JIF : Jurnal Ilmiah Informatika Prediksi Produksi Susu Segar Di Indonesia Menggunakan Algoritma Backpropagation, JIF : Jurnal Ilmiah Informatika†vol. 8, no. 01 2020, doi:10.33884/jif.v8i01.1847.

R. Damanik, M. B. Sirait, S. Yolanda, E. Ketaren, I. P. Sinaga, and M. Harahap, “Diagnosa Penyakit Kulit Pada Anjing Dengan Algoritma Multilayer Perceptron,†J. Mahajana Inf., vol. 4, no. 2, pp. 50–56, 2019.

S. Anwar, D. A. Kurnia, A. Faqih, and S. R. Sari, “Prediksi Hasil Belajar Hybrid Menggunakan Artificial Neural Network Dengan Multilayer Perceptron,†JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 5, p. 1591, 2022, doi: 10.30865/jurikom.v9i5.5024.

I. H. Harahap, E. Budianita, and I. Afrianty, “Penerapan Algoritma Jaringan Syaraf Tiruan Backpropagation Untuk Prediksi Jumlah Jamaah Pendaftar Haji Provinsi Riau,†Semin. Nas. Teknol,vol 2021, SNTIKI 13, November, pp. 32–42, 2021.

O. S. Bachri, “Forecasting Jumlah Perkara Perceraian Menggunakan Single Moving Average di Pengadilan Agama Sumber,†J. Ilm. Intech Inf. Technol. J. UMUS, vol. 1, no. 02, pp. 23–32, 2019, doi: 10.46772/intech.v1i02.67.

U. Dwi Rahayu, N. L. Chusna, and M. Fachri, “Analisis Kasus Perceraian Pada Pengadilan Negeri Bekasi Menggunakan Algoritma K-Means Clustering,†Ikraith-Informatika, vol. 6, no. 1, pp. 165–172, 2022.

R. , L. Y. D. Ainun Nur, “Implementasi Model JST Dalam Menentukan Bantuan Langsung Tunai Menggunakan Algortima Multilayer Perceptron Pada Desa Karang Anyar Kec. Aek Kuo,†Snastikom, Vol. 1 No. 1, 2021.

I. E. Widodo, A. Handojo, and S. Halim, “Aplikasi Pemetaan Penyakit Demam Berdarah di Surabaya dengan Metode Neural Network Multilayer Perceptron,†J. Infra, vol. 8, no. 1, 2020.

Zulastri, I. Afrianty, E. Budianita, and F. Syafria, “Penerapan Neural Network dengan Menggunakan Algoritma Backpropagation pada Prediksi Putusan Perceraian,†Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1188–1195, 2022.

A. Lasarudin and R. Maku, “Prediksi Pertumbuhan Jumlah Penduduk Menggunakan Algoritma Neural Network,†J. Ilmu Komput., vol. 2, no. 2, p. 37, 2022, doi: 10.31314/juik.v2i2.1715.

H. Putra and N. Ulfa Walmi, “Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation,†J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 2, pp. 100–107, 2020, doi: 10.25077/teknosi.v6i2.2020.100-107.

Ni Kadek Ary Indah Suryani, Oka Sudana, and Ayu Wirdiani, “Forecasting Pneumonia Toddler Mortality Using Comparative Model ARIMA and Multilayer Perceptron,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 4, pp. 528–537, 2022, doi: 10.29207/resti.v6i4.4106.




DOI: https://doi.org/10.30865/mib.v7i3.6291

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.