Perbandingan Metode Naïve Bayes dan K-NN dengan Ekstraksi Fitur GLCM pada Klasifikasi Daun Herbal
DOI:
https://doi.org/10.30865/mib.v7i4.6262Keywords:
Naïve Bayes, Kernels, KNN, GLCM, Classification, Herbal LeaversAbstract
Indonesia is a country with various types of herbal plants that have the potential to be very effective medicines. Herbal plants have been used since ancient times as natural medicines. One part that has health benefits is the leaves, however, there are many similarities between the different types of leaves. This research aims  to classify digital images of herbal leaves implementing the Naïve Bayes and K-Nearest Neighbor (KNN) methods with Gray Level Co-occurrence Matrix (GLCM) feature extraction. The dataset consisted of sauropus androgynus and moringa leaves with data collection in bright and dark scenarios. A total of 480 data which was divided into two parts, namely 80% for training data and 20% for testing images. The KNN distances used for comparison are Euclidean, Manhattan, Chebyshev, Minkowski, and Hamming. Meanwhile, Naïve Bayes uses Gaussian, Multinomial, and Bernoulli kernels. The results of the study showed that the KNN method with the Manhattan distance obtained the best results with an accuracy rate of up to 94% in bright scenarios.References
S. M. A. Meiriyama, Siska Devella, “Klasifikasi Daun Herbal Berdasarkan Fitur Bentuk Dan Tekstur Menggunakan KNN,†J. Tek. Inform. dan Sist. Inf., vol. 9, no. 1, pp. 2573–2584, 2022.
A. Herdiansah, R. I. Borman, D. Nurnaningsih, A. A. J. Sinlae, and R. R. Al Hakim, “Klasifikasi Citra Daun Herbal Dengan Menggunakan Backpropagation Neural Networks Berdasarkan Ekstraksi Ciri Bentuk,†JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 2, p. 388, Apr. 2022, doi: 10.30865/jurikom.v9i2.4066.
Isman, Andani Ahmad, and Abdul Latief, “Perbandingan Metode KNN Dan LBPH Pada Klasifikasi Daun Herbal,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, pp. 557–564, 2021, doi: 10.29207/resti.v5i3.3006.
P. D. Pamungkas, “Ekstraksi Citra menggunakan Metode GLCM dan KNN untuk Indentifikasi Jenis Anggrek (Orchidaceae),†2019.
A. Asni, M. Waruni K, M. Jaya, and T. Elektro, “Identifikasi Citra Cacat Las Menggunakan Metode Gray Level Co-Occurance Matrix (GLCM) dan K-NN,†2022.
F. Tempola, M. Muhammad, and A. Khairan, “Perbandingan Klasifikasi Antara K-nn dan Naive Bayes Pada Penentuan Status Gunung Berapi Dengan K-Flod Cross Validation Comparison Of Classification Between K-nn And Naive Bayes At The Determination Of The Volcanic Status With K-Fold Cross Validation,†vol. 5, no. 5, pp. 577–584, 2018, doi: 10.25126/jtiik20185983.
F. S. Ni’mah, T. Sutojo, and D. R. I. M. Setiadi, “Identifikasi Tumbuhan Obat Herbal Berdasarkan Citra Daun Menggunakan Algoritma Gray Level Co-occurence Matrix dan K-Nearest Neighbor,†J. Teknol. dan Sist. Komput., vol. 6, no. 2, pp. 51–56, Mar. 2018, doi: 10.14710/jtsiskom.6.2.2018.51-56.
Z. Abidin, Y. Fredyatama, P. Teknik Informasi, S. K. Tinggi Teknik Pati Jl Raya Pati-Trangkil, and P. Jawa Tengah, “Klasifikasi Daun Empo-Empo Menggunakan Metode Gray Level Co-Occurrence Matrix dan Algoritma K-NN,†J. Sains, Teknol. dan Ind., vol. 18, no. 02, pp. 261–267, 2021.
S. P. Backar, H. Darwis, and W. Astuti, “Hybrid Fourier Descriptor Naïve Bayes dan CNN pada Klasifikasi Daun Herbal,†vol. 8, no. 2, pp. 126–133, 2023.
W. S. Sari and C. A. Sari, “Klasifikasi Bunga Mawar Menggunakan Knn Dan Ekstraksi Fitur Glcm Dan Hsv,†Skanika, vol. 5, no. 2, pp. 145–156, 2022, doi: 10.36080/skanika.v5i2.2951.
E. P. Purwandari, R. U. Hasibuan, and D. Andreswari, “Identifikasi Jenis Bambu Berdasarkan Tekstur Daun dengan Metode Gray Level Co-Occurrence Matrix dan Gray Level Run Length Matrix,†J. Teknol. dan Sist. Komput., vol. 6, no. 4, pp. 146–151, Oct. 2018, doi: 10.14710/jtsiskom.6.4.2018.146-151.
J. Sofian and R. H. Laluma, “Klasifikasi Hasil Citra Mri Otak Untuk Memprediksi Jenis Tumor Otak Dengan Metode Image Threshold Dan Glcm Menggunakan Algoritma K-Nn (Nearest Neighbor) Classifier Berbasis Web,†Infotronik J. Teknol. Inf. dan Elektron., vol. 4, no. 2, p. 51, 2019, doi: 10.32897/infotronik.2019.4.2.258.
M. Ramadhani, H. B. D. K, and F. T. Elektro, “Klasifikasi Jenis Jerawat Berdasarkan Tekstur Dengan,†e-Proceeding Eng. Vol.5, No.1 ISSN 2355-9365, vol. 5, no. 1, pp. 870–876, 2018.
I. S. Manuel and I. Ernawati, “Implementasi GLCM dan Algoritma Naive Bayes Dalam Klasifikasi Jenis Bunga Anggrek,†Senamika, vol. 1, no. 2, pp. 99–109, 2020, [Online]. Available: https://conference.upnvj.ac.id/index.php/senamika/article/download/638/427
T. Haryanto, A. Pratama, H. Suhartanto, A. Murni, K. Kusmardi, and J. Pidanic, “Multipatch-GLCM for texture feature extraction on classification of the colon histopathology images using deep neural network with GPU acceleration,†J. Comput. Sci., vol. 16, no. 3, pp. 280–294, 2020, doi: 10.3844/JCSSP.2020.280.294.
E. Rosalina and S. Agustin, “Klasifikasi Umur Lahan Perkebunan Kelapa Sawit Pada Citra Foto Udara Berdasarkan Tekstur Menggunakan Metode Naive Bayes,†vol. 1, no. 1, pp. 6–13, 2019.
G. Mulyawan, Y. A. Sari, and M. T. Furqon, “Klasifikasi Citra Makanan Menggunakan HSV Color Moment dan Haralick Feature Extraction dengan Naive Bayes Classifier,†2019. [Online]. Available: http://j-ptiik.ub.ac.id
S. Wahyuningsih, D. R. Utari, U. B. Luhur, D. Tree, and K. Validation, “Perbandingan Metode K-Nearest Neighbor , Naïve Bayes dan Decision Tree untuk Prediksi Kelayakan Pemberian Kredit,†pp. 8–9, 2018.
F. K. Fikriah, M. Burhanis Sulthan, N. Mujahidah, and M. Khoirur Roziqin, “Naïve Bayes untuk Klasifikasi Penyakit Daun Bawang Merah Berdasarkan Ekstraksi Fitur Gray Level Cooccurrence Matrix (GLCM),†J. Komtika (Komputasi dan Inform., vol. 6, no. 2, pp. 133–141, Nov. 2022, doi: 10.31603/komtika.v6i2.7925.
N. Tri Romadloni, I. Santoso, S. Budilaksono, and M. Ilmu Komputer STMIK Nusa Mandiri Jakarta, “Perbandingan Metode Naive Bayes, K-nn dan Decision Tree Terhadap Analisis Sentimen Transportasi KRL Commuter Line,†2019.
W. Astuti et al., “A Performance of K-Nearest Neighbor Classification in Paraphilia Disease,†Proc. - 2nd East Indones. Conf. Comput. Inf. Technol. Internet Things Ind. EIConCIT 2018, pp. 223–226, 2018, doi: 10.1109/EIConCIT.2018.8878672.
G. K. Pati and E. Umar, “Analisis Sentimen Komentar Pengunjung Terhadap Tempat Wisata Danau Weekuri Menggunakan Metode Naive Bayes Classifier Dan K- Nearest Neighbor,†vol. 6, pp. 2309–2315, 2022, doi: 10.30865/mib.v6i4.4635.
F. Ishanan and Y. A. Mustofa, “Deteksi Penyakit Tanaman Daun Bayam Menggunakan Metode GLCM dan Artificial Neural Network (ANN),†J. Nas. cosPhi, vol. 3, no. 1, pp. 2597–9329, 2019.
R. R. Waliyansyah and C. Fitriyah, “Perbandingan Akurasi Klasifikasi Citra Kayu Jati Menggunakan Metode Naive Bayes dan k-Nearest Neighbor (k-NN),†J. Edukasi dan Penelit. Inform., vol. 5, no. 2, p. 157, 2019, doi: 10.26418/jp.v5i2.32473.
M. Wibowo, M. Rizieq, and F. Djafar, “Perbandingan Metode Klasifikasi Untuk Deteksi Stress Pada Mahasiswa di Perguruan Tinggi,†vol. 7, pp. 153–159, 2023, doi: 10.30865/mib.v7i1.5182.
A. Prabowo, D. Erwanto, and P. N. Rahayu, “Klasifikasi Kesegaran Daging Sapi Menggunakan Metode Ekstraksi Tekstur GLCM dan KNN Freshness Classification of Beef Using GLCM Texture Extraction Method and KNN,†Jec, vol. 7, no. 1, 2021.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).