Perbandingan Algoritma Naïve Bayes Classifier Dan K-Nearest Neighbor Pada Sentimen Review Aplikasi Mobile JKN

 (*)Citra Annisa Mail (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 M. Afdal (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Tengku Khairil Ahsyar (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)

(*) Corresponding Author

Submitted: June 2, 2023; Published: July 23, 2023


BPJS Health must provide health services for the people of Indonesia. With the availability of the Mobile JKN application, it is useful to facilitate services for participants of the National Health Insurance-Indonesian Health Card (JKN-KIS). Mobile JKN is an innovation in electronic government health insurance services, making it easier for the public to access services and information quickly in the palm of their hand. With this innovation, many pros and cons flowed from the community, various comments appeared in the Play Store review column, sentiment analysis could be used to assess and rate applications. Therefore, these sentiments can be analyzed into information that can be used as material for evaluation and consideration by BPJS Kesehatan regarding Mobile JKN. This study aims to look at the results of the accuracy comparison between the Naïve Bayes Classifier (NBC) and K-Nearest Neighbor (KNN) algorithms on the sentiment review of the Mobile JKN application on the Play Store. This study used the Naïve Bayes Classifier (NBC) and K-Nearest Neighbor (KNN) methods with data scrapping techniques to collect Play Store data for the past year, namely 2,847 data and divided into 3 classes, namely positive, neutral and negative. Distribution of data using 10 K-Fold Cross Validation so that a comparison of the accuracy level of the Naïve Bayes Classifier (NBC) is 61.15%, while the accuracy level of K-Nearest Neighbor (KNN) is 87.59%.


K-Nearest Neighbor; Mobile JKN; Naïve Bayes Classifier; Review; Sentiment Analysis

Full Text:


Article Metrics

Abstract view : 251 times
PDF - 213 times


R. A. Prasetiyo and Safuan, “Efektivitas Penggunaan Aplikasi Mobile JKN Dalam Mengurangi Antrian,” Syntax Lit. J. Ilm. Indones., vol. 7, no. 2, pp. 972–978, 2022.

A. Wulanadary, S. Sudarman, and I. Ikhsan, “Inovasi Bpjs Kesehatan Dalam Pemberian Layanan Kepada Masyarakat : Aplikasi Mobile Jkn,” J. Public Policy, vol. 5, no. 2, pp. 98–107, 2019, doi: 10.35308/jpp.v5i2.1119.

R. Rinjani and N. Sari, “Analisis Penerapan Aplikasi Mobile Jkn Terhadap Peserta Badan Penyelenggara Jaminan Sosial Kesehatan Cabang Subulussalam,” PUBLIKA J. Ilmu Adm. Publik, vol. 8, no. 2, pp. 209–223, 2022, doi: 10.25299/jiap.2022.vol8(2).10491.

M. Mukhlis, “Analisis Kepuasan Pengguna Aplikasi Mobile JKN pada BPJS Kesehatan Cabang Pekanbaru Menggunakan Model EUCS,” 2021.

A. Affandy and O. Nandiyati, “Sentiment Analysis Berbasis Algoritma Naïve Bayes Classsifier untuk Identifikasi Persepsi Masyarakat Terhadap Produk / Layanan Perusahaan,” JOINS (Journal Inf. Syst., vol. 5, no. 1, pp. 126–135, 2020, doi: 10.33633/joins.v5i1.3608.

M. Z. Anbari and B. Sugiantoro, “Studi Komparasi Metode Analisis Sentimen Naïve Bayes , SVM , dan Logistic Regression Pada Piala Dunia 2022,” vol. 7, no. 2, pp. 688–695, 2023, doi: 10.30865/mib.v7i2.5383.

S. Rahayu, Y. MZ, J. E. Bororing, and R. Hadiyat, “Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP,” Edumatic J. Pendidik. Inform., vol. 6, no. 1, pp. 98–106, 2022, doi: 10.29408/edumatic.v6i1.5433.

I. Saputra, T. Djatna, R. R. A. Siregar, D. A. Kristiyanti, H. R. Yani, and A. A. Riyadi, “Text Mining of PeduliLindungi Application Reviews on Google Play Store,” Fakt. Exacta, vol. 15, no. 2, pp. 101–108, 2022.

A. Perdana, A. Hermawan, and D. Avianto, “Analisis Sentimen Terhadap Isu Penundaan Pemilu di Twitter Menggunakan Naive Bayes Clasifier,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 11, no. 2, pp. 195–200, 2022, doi: 10.32736/sisfokom.v11i2.1412.

E. W. Sholeha, S. Yunita, R. Hammad, V. C. Hardita, and K. Kaharuddin, “Analisis Sentimen Pada Agen Perjalanan Online Menggunakan Naïve Bayes dan K-Nearest Neighbor,” JTIM J. Teknol. Inf. dan Multimed., vol. 3, no. 4, pp. 203–208, 2022, doi: 10.35746/jtim.v3i4.178.

M. Afdal and L. Rahma Elita, “Penerapan Text Mining Pada Aplikasi Tokopedia Menggunakan Algoritma K-Nearest Neighbor,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 8, no. 1, pp. 78–87, 2022.

K. Moolthaisong and W. Songpan, “Emotion Analysis and Classification of Movie Reviews Using Data Mining,” 2020, pp. 89–92.

A. R. Isnain, J. Supriyanto, and M. P. Kharisma, “Implementation of K-Nearest Neighbor (K-NN) Algorithm For Public Sentiment Analysis of Online Learning,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 15, no. 2, pp. 121–130, 2021, doi: 10.22146/ijccs.65176.

I. M. K. Karo, M. F. M. Fudzee, S. Kasim, and A. A. Ramli, “Karonese Sentiment Analysis: A New Dataset and Preliminary Result,” Int. J. Informatics Vis., vol. 6, no. 2–2, pp. 523–530, 2022, doi: 10.30630/joiv.6.2-2.1119.

A. Rahmadeyan and Mustakim, “Seleksi Fitur pada Supervised Learning: Klasifikasi Prestasi Belajar Mahasiswa Saat dan Pasca Pandemi COVID-19,” J. Nas. Teknol. dan Sist. Inf., vol. 9, no. 1, pp. 21–32, 2023, doi:

B. Noori, “Classification of Customer Reviews Using Machine Learning Algorithms,” Appl. Artif. Intell., vol. 35, no. 8, pp. 567–588, 2021, doi: 10.1080/08839514.2021.1922843.

F. Firmansyah et al., “Comparing Sentiment Analysis of Indonesian Presidential Election 2019 with Support Vector Machine and K-Nearest Neighbor Algorithm,” in 6th International Conference on Computing, Engineering, and Design, (ICCED 2020), 2020, pp. 5–10, doi: 10.1109/ICCED51276.2020.9415767.

R. S. Amardita, A. Adiwijaya, and M. D. Purbolaksono, “Analisis Sentimen terhadap Ulasan Paris Van Java Resort Lifestyle Place di Kota Bandung Menggunakan Algoritma KNN,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 1, p. 62, 2022, doi: 10.30865/jurikom.v9i1.3793.

A. Erfina and M. F. Al-shufi, “Analisis Sentimen Aplikasi Jasa Kurir Di Play Store Menggunakan Algoritma Naive Bayes,” J. Sist. Inf. dan Inform., vol. 5, no. 2, pp. 103–110, 2022, doi: 10.47080/simika.v5i2.1789.

R. Gunawan, R. Septiadi, F. Apri Wenando, H. Mukhtar, and Syahril, “K-Nearest Neighbor (KNN) untuk Menganalisis Sentimen terhadap Kebijakan Merdeka Belajar Kampus Merdeka pada Komentar Twitter,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 2, pp. 152–158, 2022, doi: 10.37859/coscitech.v3i2.3841.

O. Somantri and D. Dairoh, “Analisis Sentimen Penilaian Tempat Tujuan Wisata Kota Tegal Berbasis Text Mining,” J. Edukasi dan Penelit. Inform., vol. 5, no. 2, pp. 191–196, 2019, doi: 10.26418/jp.v5i2.32661.

I. Irawaty, R. Andreswari, and D. Pramesti, “Vectorizer Comparison for Sentiment Analysis on Social Media Youtube: A Case Study,” in 2020 3rd International Conference on Computer and Informatics Engineering, (IC2IE 2020), 2020, pp. 69–74, doi: 10.1109/IC2IE50715.2020.9274650.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Perbandingan Algoritma Naïve Bayes Classifier Dan K-Nearest Neighbor Pada Sentimen Review Aplikasi Mobile JKN


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.