Analisis Sentimen Berbasis Aspek Ulasan Aplikasi Mobile JKN dengan Lexicon Based dan Naïve Bayes

Salsabila Roiqoh, Badrus Zaman, Kartono Kartono

Abstract


Badan Penyelenggara Jaminan Sosial (BPJS) Kesehatan is a legal entity that provides social health insurance programs for the public released application called Mobile JKN to support various health services activities using users devices. Mobile JKN has not fully received a positive public perception and still has many shortcomings. It is necessary to conduct a deeper evaluation and analysis of the Mobile JKN. This study focuses on aspect-based sentiment analysis of user reviews on the Google Play Store to evaluate the Mobile JKN. The review data used are the last two versions, 4.2.3 and 4.3.0. This study was carried out by modeling aspects/topics using the Latent Dirichlet Allocation method and sentiment analysis using Naïve Bayes and Lexicon-Based methods. This research resulted in 3 aspects, namely Services and Features, Register and Login, and User Satisfaction. This was obtained based on the model with the highest coherence score of 0.6392 obtained in the model looping with the number of topics from 1 to 9, random state = 42, passes =50, and iteration = 60. Meanwhile, based on the sentiment analysis results, the Naïve Bayes method is better than the Lexicon-Based (Inset Lexicon) method. This is evident from performance of the Naïve Bayes with the highest accuracy score of 94.75% and Lexicon Based with Inset Lexicon obtained an accuracy score of 59.99%.


Keywords


Aspect Based Sentiment Analysis (ABSA); Latent Dirichlet Allocation; Lexicon Based; Naïve Bayes; Text Mining; Topic Modeling.

Full Text:

PDF

References


M. Ardinata, “Tanggung Jawab Negara terhadap Jaminan Kesehatan dalam Perspektif Hak Asasi Manusia (HAM),†Jurnal HAM, vol. 11, no. 2, hlm. 319, Agu 2020, doi: 10.30641/ham.2020.11.319-332.

BPJS Kesehatan, “BPJS Kesehatan,†20 September 2022. https://Bpjs-Kesehatan.go.Id/Bpjs/ (diakses 19 Juni 2023).

BPJS Kesehatan, “Panduan Layanan JKN-KIS,†22 September 2022. https://www.bpjs-kesehatan.go.id/bpjs/arsip/view/1477 (diakses 19 Juni 2023).

T. K. Putri, B. Irawan, dan D. Zulfiani, “Presepsi Publik dalam Pelaksanaan Inovasi Pelayanan Jaminan Kesehatan Berbasis Teknologi Melalui Mobile JKN Oleh BPJS Kesehatan Indonesia,†eJournal Administrasi Publik, vol. 9, no. 4, hlm. 5710–5721, 2022. ISSN 2541-674x.

P. E. P. Utomo, M. Manaar, U. Khaira, dan T. Suratno, “Analisis Sentimen Online Review Pengguna Bukalapak Menggunakan Metode Algoritma TF-IDF,†JUSS (Jurnal Sains dan Sistem Informasi), vol. 2, no. 2, hlm. 35–39, Nov 2021, doi: 10.22437/juss.v2i2.8469.

W. Chen, P. Lin, W. Zhang, J. Du, dan Z. He, “Hierarchical Interactive Network for joint aspect extraction and sentiment classification,†Knowl Based Syst, vol. 256, hlm. 109825, Nov 2022, doi: 10.1016/j.knosys.2022.109825.

Y. Yiran dan S. Srivastava, “Aspect-based Sentiment Analysis on mobile phone reviews with LDA,†dalam Proceedings of the 2019 4th International Conference on Machine Learning Technologies, New York, NY, USA: ACM, Jun 2019, hlm. 101–105. doi: 10.1145/3340997.3341012.

Y. Fauziah, B. Yuwono, dan A. S. Aribowo, “Lexicon Based Sentiment Analysis in Indonesia Languages : A Systematic Literature Review,†RSF Conference Series: Engineering and Technology, vol. 1, no. 1, hlm. 363–367, Des 2021, doi: 10.31098/cset.v1i1.397.

V. A. Fitri, R. Andreswari, dan M. A. Hasibuan, “Sentiment Analysis of Social Media Twitter with Case of Anti-LGBT Campaign in Indonesia using Naïve Bayes, Decision Tree, and Random Forest Algorithm,†Procedia Comput Sci, vol. 161, hlm. 765–772, 2019, doi: 10.1016/j.procs.2019.11.181.

A. F. Akbar, H. B. Santoso, P. O. H. Putra, dan S. B. Yudhoatmojo, “User Perception Analysis of Online Learning Platform ‘Zenius’ During the Coronavirus Pandemic Using Text Mining Techniques,†Jurnal Sistem Informasi, vol. 17, no. 2, hlm. 33–47, Okt 2021, doi: 10.21609/jsi.v17i2.1065.

V. G. Ramadhan dan Y. Sibaroni, “Sentiment Analysis of Public Opinion Related to Rapid Test Using LDA Method,†Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 4, hlm. 672–679, Agu 2021, doi: 10.29207/resti.v5i4.3139.

S. P. Astuti, “Analisis Sentimen Berbasis Aspek pada Aplikasi Tokopedia menggunakan LDA dan Naïve Bayes,†B.S thesis, Fakultas Sains dan Teknologi, UIN Syarif Hidayatullah Jakarta, Jakarta, 2020.

M. A. Rosid, A. S. Fitrani, I. R. I. Astutik, N. I. Mulloh, dan H. A. Gozali, “Improving Text Preprocessing For Student Complaint Document Classification Using Sastrawi,†IOP Conf Ser Mater Sci Eng, vol. 874, no. 1, hlm. 012017, Jun 2020, doi: 10.1088/1757-899X/874/1/012017.

L. Hermawan dan M. B. Ismiati, “Pembelajaran Text Preprocessing berbasis Simulator Untuk Mata Kuliah Information Retrieval,†Jurnal Transformatika, vol. 17, no. 2, hlm. 188, Jan 2020, doi: 10.26623/transformatika.v17i2.1705.

D. A. Prabowo dan Sudianto, “Analisis Sentimen Sepak Bola Indonesia pada Twitter menggunakan K-Nearest Neighbors dan Random Forest,†JSAI (Journal Scientific and Applied Informatics), vol. 6, no. 2, hlm. 217–227, Jun 2023, doi: 10.36085/jsai.v6i2.5337.

A. Nurlayli dan Moch. A. Nasichuddin, “Topik Modeling Penelitian Dosen JPTEI UNY pada Google Scholar Menggunakan Latent Dirichlet Allocation,†Elinvo (Electronics, Informatics, and Vocational Education), vol. 4, no. 2, hlm. 154–161, Nov 2019, doi: 10.21831/elinvo.v4i2.28254.

E. Wahyudi dan R. Kusumaningrum, “Aspect Based Sentiment Analysis in E-Commerce User Reviews Using Latent Dirichlet Allocation (LDA) and Sentiment Lexicon,†dalam 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS), IEEE, Okt 2019, hlm. 1–6. doi: 10.1109/ICICoS48119.2019.8982522.

Y. Sahria dan D. H. Fudholi, “Analysis of Health Research Topics in Indonesia Using the LDA (Latent Dirichlet Allocation) Topic Modeling Method,†Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 2, hlm. 336–344, Apr 2020, doi: 10.29207/resti.v4i2.1821.

C. Naury, D. H. Fudholi, dan A. F. Hidayatullah, “Topic Modelling pada Sentimen Terhadap Headline Berita Online Berbahasa Indonesia Menggunakan LDA dan LSTM,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 1, hlm. 24, Jan 2021, doi: 10.30865/mib.v5i1.2556.

A. F. Hidayatullah, W. Kurniawan, dan C. I. Ratnasari, “Topic Modeling on Indonesian Online Shop Chat,†dalam Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval, New York, NY, USA: ACM, Jun 2019, hlm. 121–126. doi: 10.1145/3342827.3342831.

Y. Azhar, “Metode Lexicon-Learning Based untuk Identifikasi Tweet Opini Berbahasa Indonesia,†Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 6, no. 3, hlm. 237, Jan 2018, doi: 10.23887/janapati.v6i3.11739.

G. H. Herlambang, A. Nugroho, dan B. Zaman, “Klasifikasi Perkiraan Kelulusan Mahasiswa Jenjang Magister Menggunakan Metode Naive Bayes,†NJCA (Nusantara Journal of Computers and Its Applications), vol. 5, no. 1, hlm. 40–46, 2020, doi: 10.36564/njca.v5i1.186.

D. Pratmanto, R. Rousyati, F. F. Wati, A. E. Widodo, S. Suleman, dan R. Wijianto, “App Review Sentiment Analysis Shopee Application In Google Play Store Using Naive Bayes Algorithm,†dalam Journal of Physics: Conference Series, Nov 2020. doi: 10.1088/1742-6596/1641/1/012043.

B. Zaman, A. Justitia, K. N. Sani, dan E. Purwanti, “An Indonesian Hoax News Detection System Using Reader Feedback and Naïve Bayes Algorithm,†Cybernetics and Information Technologies, vol. 20, no. 1, hlm. 82–94, Mar 2020, doi: 10.2478/cait-2020-0006.

D. Jurafsky dan J. H. Martin, “Naive Bayes and Sentiment Classification,†dalam Speech and Language Processing, Third Edition.Stanford University, 2021.

Y. Matira dan I. Setiawan, “Pemodelan Topik pada Judul Berita Online Detikcom Menggunakan Latent Dirichlet Allocation,†Estimasi: Journal of Statistics and Its Application, vol. 4, no. 1, hlm. 53–63, 2023, doi: 10.20956/ejsa.vi.24843.

V. Nurcahyawati dan Z. Mustaffa, “Vader Lexicon and Support Vector Machine Algorithm to Detect Customer Sentiment Orientation,†Journal of Information Systems Engineering and Business Intelligence, vol. 9, no. 1, hlm. 108–118, Apr 2023, doi: 10.20473/jisebi.9.1.108-118.




DOI: https://doi.org/10.30865/mib.v7i3.6194

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.